Implementing the Dynamic Feedback-Driven Learning Optimization Framework: A Machine Learning Approach to Personalize Educational Pathways
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enhances student engagement and learning effective...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/14/2/916 |
Summary: | This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enhances student engagement and learning effectiveness by providing real-time feedback and personalized instructional content tailored to individual learning needs. This research demonstrates the potential of leveraging advanced technology to create more effective and individualized learning environments, offering educators a new tool to support each student’s learning journey. The study thus contributes to the field by showcasing how personalized education can be optimized using modern technological advancements. |
---|---|
ISSN: | 2076-3417 |