Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis
Category: Ankle, Sports, Trauma Introduction/Purpose: Injury to the Anterior inferior tibiofibular ligament (AITFL), Posterior inferior tibiofibular ligament (PITFL) and Interosseus membrane (IOM) predicts residual symptoms in ankle sprains. Limited kinematic knowledge of the tibiofibular joint resu...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2017-09-01
|
Series: | Foot & Ankle Orthopaedics |
Online Access: | https://doi.org/10.1177/2473011417S000303 |
_version_ | 1818313482932584448 |
---|---|
author | Conor Murphy MD Thomas Pfeiffer MD Jason Zlotnicki MD Volker Musahl MD Richard Debski PhD MaCalus Hogan MD |
author_facet | Conor Murphy MD Thomas Pfeiffer MD Jason Zlotnicki MD Volker Musahl MD Richard Debski PhD MaCalus Hogan MD |
author_sort | Conor Murphy MD |
collection | DOAJ |
description | Category: Ankle, Sports, Trauma Introduction/Purpose: Injury to the Anterior inferior tibiofibular ligament (AITFL), Posterior inferior tibiofibular ligament (PITFL) and Interosseus membrane (IOM) predicts residual symptoms in ankle sprains. Limited kinematic knowledge of the tibiofibular joint results in missed diagnosis and poor clinical outcomes. Lateral fibular displacement on radiologic assessment signifies syndesmotic disruption which dictates operative management. Previous studies demonstrated that fibular motion is multiplanar after injury. The objective of this study is to determine increases in fibular motion with sequential syndesmotic injury and the contribution of the AITFL. Methods: Five fresh-frozen human cadaveric tibial plateau-to-toe specimens with a mean age of 58 years (range 38-73 years) were tested using a 6-degree-of-freedom robotic testing system. The tibia and calcaneus were rigidly fixed. The subtalar joint was fused. The full fibular length was maintained and fibular motion was unconstrained. A 5 Nm external rotation and 5 Nm inversion moment were applied to the ankle at 0°, 15°, and 30° plantarflexion and 10° dorsiflexion. The motion of the fibula was tracked by a 3D optical tracking system. Outcome variables included fibular medial-lateral (ML) translation, anterior-posterior (AP) translation, and external rotation (ER) during each applied moment and flexion angle in the following conditions: 1) intact ankle, 2) AITFL transected, 3) PITFL and IOM transected. Statistical analysis included an ANOVA with a post-hoc Tukey analysis to compare the changes in fibular motion between the intact and injury models at each applied moment and flexion angle (*p<0.05). Results: The only significant differences in fibular motion were during the 5 Nm inversion moment. The posterior translation of the fibula was significantly greater with AITFL injury compared to the intact ankle at 15° and 30° plantarflexion. Significant increases in posterior translation between the intact ankle and AITFL, PITFL, and IOM injury existed at 0°, 15°, and 30° plantarflexion. No significant motion differences were observed between the AITFL injury and combined injury at any condition. When comparing the intact ankle and combined injury, significant increases in ER existed at 0° and 30° plantarflexion and 10° dorsiflexion. The only significant difference in ER between the intact ankle and AITFL injury existed at 0° plantarflexion. Conclusion: This study showed that transecting the AITFL resulted in the largest increases in fibular motion with only minimal further increases after complete syndesmotic injury. Fibular displacement was primarily in the sagittal plane. This study utilized a novel setup with unconstrained motion in a full length, intact fibula. Measuring ML translation alone could underestimate sagittal and rotational instability of the syndesmosis in AITFL injuries. Evaluating fibular AP translation and ER are not part of current standard diagnostic protocols. Physicians may consider more aggressive treatment of isolated AITFL injuries. |
first_indexed | 2024-12-13T08:34:27Z |
format | Article |
id | doaj.art-1fe10e4afa224854b466ecf418047a23 |
institution | Directory Open Access Journal |
issn | 2473-0114 |
language | English |
last_indexed | 2024-12-13T08:34:27Z |
publishDate | 2017-09-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Foot & Ankle Orthopaedics |
spelling | doaj.art-1fe10e4afa224854b466ecf418047a232022-12-21T23:53:40ZengSAGE PublishingFoot & Ankle Orthopaedics2473-01142017-09-01210.1177/2473011417S000303Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the SyndesmosisConor Murphy MDThomas Pfeiffer MDJason Zlotnicki MDVolker Musahl MDRichard Debski PhDMaCalus Hogan MDCategory: Ankle, Sports, Trauma Introduction/Purpose: Injury to the Anterior inferior tibiofibular ligament (AITFL), Posterior inferior tibiofibular ligament (PITFL) and Interosseus membrane (IOM) predicts residual symptoms in ankle sprains. Limited kinematic knowledge of the tibiofibular joint results in missed diagnosis and poor clinical outcomes. Lateral fibular displacement on radiologic assessment signifies syndesmotic disruption which dictates operative management. Previous studies demonstrated that fibular motion is multiplanar after injury. The objective of this study is to determine increases in fibular motion with sequential syndesmotic injury and the contribution of the AITFL. Methods: Five fresh-frozen human cadaveric tibial plateau-to-toe specimens with a mean age of 58 years (range 38-73 years) were tested using a 6-degree-of-freedom robotic testing system. The tibia and calcaneus were rigidly fixed. The subtalar joint was fused. The full fibular length was maintained and fibular motion was unconstrained. A 5 Nm external rotation and 5 Nm inversion moment were applied to the ankle at 0°, 15°, and 30° plantarflexion and 10° dorsiflexion. The motion of the fibula was tracked by a 3D optical tracking system. Outcome variables included fibular medial-lateral (ML) translation, anterior-posterior (AP) translation, and external rotation (ER) during each applied moment and flexion angle in the following conditions: 1) intact ankle, 2) AITFL transected, 3) PITFL and IOM transected. Statistical analysis included an ANOVA with a post-hoc Tukey analysis to compare the changes in fibular motion between the intact and injury models at each applied moment and flexion angle (*p<0.05). Results: The only significant differences in fibular motion were during the 5 Nm inversion moment. The posterior translation of the fibula was significantly greater with AITFL injury compared to the intact ankle at 15° and 30° plantarflexion. Significant increases in posterior translation between the intact ankle and AITFL, PITFL, and IOM injury existed at 0°, 15°, and 30° plantarflexion. No significant motion differences were observed between the AITFL injury and combined injury at any condition. When comparing the intact ankle and combined injury, significant increases in ER existed at 0° and 30° plantarflexion and 10° dorsiflexion. The only significant difference in ER between the intact ankle and AITFL injury existed at 0° plantarflexion. Conclusion: This study showed that transecting the AITFL resulted in the largest increases in fibular motion with only minimal further increases after complete syndesmotic injury. Fibular displacement was primarily in the sagittal plane. This study utilized a novel setup with unconstrained motion in a full length, intact fibula. Measuring ML translation alone could underestimate sagittal and rotational instability of the syndesmosis in AITFL injuries. Evaluating fibular AP translation and ER are not part of current standard diagnostic protocols. Physicians may consider more aggressive treatment of isolated AITFL injuries.https://doi.org/10.1177/2473011417S000303 |
spellingShingle | Conor Murphy MD Thomas Pfeiffer MD Jason Zlotnicki MD Volker Musahl MD Richard Debski PhD MaCalus Hogan MD Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis Foot & Ankle Orthopaedics |
title | Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis |
title_full | Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis |
title_fullStr | Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis |
title_full_unstemmed | Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis |
title_short | Anterior-Posterior Translation and Axial Rotation of the Fibula are Significantly Increased with Sequential Disruption of the Syndesmosis |
title_sort | anterior posterior translation and axial rotation of the fibula are significantly increased with sequential disruption of the syndesmosis |
url | https://doi.org/10.1177/2473011417S000303 |
work_keys_str_mv | AT conormurphymd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis AT thomaspfeiffermd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis AT jasonzlotnickimd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis AT volkermusahlmd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis AT richarddebskiphd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis AT macalushoganmd anteriorposteriortranslationandaxialrotationofthefibulaaresignificantlyincreasedwithsequentialdisruptionofthesyndesmosis |