Summary: | Multiple myeloma (MM) is a malignant neoplasm characterized by clonal proliferation of abnormal plasma cells. In many countries, it ranks as the second most prevalent malignant neoplasm of the hematopoietic system. Although treatment methods for MM have been continuously improved and the survival of patients has been dramatically prolonged, MM remains an incurable disease with a high probability of recurrence. As such, there are still many challenges to be addressed. One promising approach is single-cell RNA sequencing (scRNA-seq), which can elucidate the transcriptome heterogeneity of individual cells and reveal previously unknown cell types or states in complex tissues. In this review, we outlined the experimental workflow of scRNA-seq in MM, listed some commonly used scRNA-seq platforms and analytical tools. In addition, with the advent of scRNA-seq, many studies have made new progress in the key molecular mechanisms during MM clonal evolution, cell interactions and molecular regulation in the microenvironment, and drug resistance mechanisms in target therapy. We summarized the main findings and sequencing platforms for applying scRNA-seq to MM research and proposed broad directions for targeted therapies based on these findings.
|