Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry

The present dataset contains colour images acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry. The data provided in this article is related to the research article entitled “Fruit d...

Full description

Bibliographic Details
Main Authors: Jordi Gené-Mola, Ricardo Sanz-Cortiella, Joan R. Rosell-Polo, Josep-Ramon Morros, Javier Ruiz-Hidalgo, Verónica Vilaplana, Eduard Gregorio
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340920304856
_version_ 1811286291747176448
author Jordi Gené-Mola
Ricardo Sanz-Cortiella
Joan R. Rosell-Polo
Josep-Ramon Morros
Javier Ruiz-Hidalgo
Verónica Vilaplana
Eduard Gregorio
author_facet Jordi Gené-Mola
Ricardo Sanz-Cortiella
Joan R. Rosell-Polo
Josep-Ramon Morros
Javier Ruiz-Hidalgo
Verónica Vilaplana
Eduard Gregorio
author_sort Jordi Gené-Mola
collection DOAJ
description The present dataset contains colour images acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry. The data provided in this article is related to the research article entitled “Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry” [1]. The Fuji-SfM dataset includes: (1) a set of 288 colour images and the corresponding annotations (apples segmentation masks) for training instance segmentation neural networks such as Mask-RCNN; (2) a set of 582 images defining a motion sequence of the scene which was used to generate the 3D model of 11 Fuji apple trees containing 1455 apples by using SfM; (3) the 3D point cloud of the scanned scene with the corresponding apple positions ground truth in global coordinates. With that, this is the first dataset for fruit detection containing images acquired in a motion sequence to build the 3D model of the scanned trees with SfM and including the corresponding 2D and 3D apple location annotations. This data allows the development, training, and test of fruit detection algorithms either based on RGB images, on coloured point clouds or on the combination of both types of data.
first_indexed 2024-04-13T02:57:29Z
format Article
id doaj.art-200301a158074038939fc3f07700f6c1
institution Directory Open Access Journal
issn 2352-3409
language English
last_indexed 2024-04-13T02:57:29Z
publishDate 2020-06-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj.art-200301a158074038939fc3f07700f6c12022-12-22T03:05:34ZengElsevierData in Brief2352-34092020-06-0130105591Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetryJordi Gené-Mola0Ricardo Sanz-Cortiella1Joan R. Rosell-Polo2Josep-Ramon Morros3Javier Ruiz-Hidalgo4Verónica Vilaplana5Eduard Gregorio6Research Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, Spain; Corresponding author.Research Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, SpainResearch Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, SpainDepartment of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Catalonia, SpainDepartment of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Catalonia, SpainDepartment of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Catalonia, SpainResearch Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, SpainThe present dataset contains colour images acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry. The data provided in this article is related to the research article entitled “Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry” [1]. The Fuji-SfM dataset includes: (1) a set of 288 colour images and the corresponding annotations (apples segmentation masks) for training instance segmentation neural networks such as Mask-RCNN; (2) a set of 582 images defining a motion sequence of the scene which was used to generate the 3D model of 11 Fuji apple trees containing 1455 apples by using SfM; (3) the 3D point cloud of the scanned scene with the corresponding apple positions ground truth in global coordinates. With that, this is the first dataset for fruit detection containing images acquired in a motion sequence to build the 3D model of the scanned trees with SfM and including the corresponding 2D and 3D apple location annotations. This data allows the development, training, and test of fruit detection algorithms either based on RGB images, on coloured point clouds or on the combination of both types of data.http://www.sciencedirect.com/science/article/pii/S2352340920304856Fruit detectionYield predictionYield mappingStructure-from-motionPhotogrammetryMask R-CNN
spellingShingle Jordi Gené-Mola
Ricardo Sanz-Cortiella
Joan R. Rosell-Polo
Josep-Ramon Morros
Javier Ruiz-Hidalgo
Verónica Vilaplana
Eduard Gregorio
Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
Data in Brief
Fruit detection
Yield prediction
Yield mapping
Structure-from-motion
Photogrammetry
Mask R-CNN
title Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
title_full Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
title_fullStr Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
title_full_unstemmed Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
title_short Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry
title_sort fuji sfm dataset a collection of annotated images and point clouds for fuji apple detection and location using structure from motion photogrammetry
topic Fruit detection
Yield prediction
Yield mapping
Structure-from-motion
Photogrammetry
Mask R-CNN
url http://www.sciencedirect.com/science/article/pii/S2352340920304856
work_keys_str_mv AT jordigenemola fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT ricardosanzcortiella fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT joanrrosellpolo fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT josepramonmorros fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT javierruizhidalgo fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT veronicavilaplana fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry
AT eduardgregorio fujisfmdatasetacollectionofannotatedimagesandpointcloudsforfujiappledetectionandlocationusingstructurefrommotionphotogrammetry