Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy

Abstract In this study, confocal Raman microspectroscopy was used to detect lipids in microalgae rapidly and non-destructively. Microalgae cells were cultured under nitrogen deficiency. The accumulation of lipids in Scenedesmus obliquus was observed by Nile red staining, and the total amount of lipi...

Full description

Bibliographic Details
Main Authors: Yongni Shao, Hui Fang, Hong Zhou, Qi Wang, Yiming Zhu, Yong He
Format: Article
Language:English
Published: BMC 2017-12-01
Series:Biotechnology for Biofuels
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13068-017-0977-8
Description
Summary:Abstract In this study, confocal Raman microspectroscopy was used to detect lipids in microalgae rapidly and non-destructively. Microalgae cells were cultured under nitrogen deficiency. The accumulation of lipids in Scenedesmus obliquus was observed by Nile red staining, and the total amount of lipids accumulated in the cells was measured by gravimetric method. The signals from different microalgae cells were collected by confocal Raman microspectroscopy to establish a prediction model of intracellular lipid content, and surface scanning signals for drawing pseudo color images of lipids distribution. The images can show the location of pyrenoid and lipid accumulation in cells. Analyze Raman spectrum data and build PCA-LDA model using four different bands (full bands, pigments, lipids, and mixed features). Models of full bands or pigment characteristic bands were capable of identifying S. obliquus cells under different nitrogen stress culture time. The prediction accuracy of model of lipid characteristic bands is relatively low. The correlation between the fatty acid content measured by the gravimetric method and the integral Raman intensity of the oil characteristic peak (1445 cm−1) measured by Raman spectroscopy was analyzed. There was significant correlation (R 2 = 0.83), which means that Raman spectroscopy is applicable to semi-quantitative detection of microalgal lipid content.
ISSN:1754-6834