Improvement of dye-sensitized solar cells' performance via co-sensitization of new azo thiazole organic dyes with ruthenium (II) based N-719 dye

Three novel azo thiazole organic dyes, NA-1–3, have been synthesized and utilized as co-sensitizers in dye-sensitized solar cells (DSSCs). These co-sensitizers were designed with a thiazole ring π-bridge that mediates between the diazo (–N = N–) functional group and carboxylic acid anchoring unit. T...

Full description

Bibliographic Details
Main Authors: Salhah D. Al-Qahtani, Rua B. Alnoman, Nada M. Alatawi, Kholood M. Alkhamis, Abrar Bayazeed, Amerah Alsoliemy, Nashwa M. El-Metwaly
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Journal of Saudi Chemical Society
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1319610323000479
Description
Summary:Three novel azo thiazole organic dyes, NA-1–3, have been synthesized and utilized as co-sensitizers in dye-sensitized solar cells (DSSCs). These co-sensitizers were designed with a thiazole ring π-bridge that mediates between the diazo (–N = N–) functional group and carboxylic acid anchoring unit. They possess a rod-like molecular structure and exhibit strong UV–vis absorption near 600 nm. Co-sensitization studies were also conducted with the ruthenium complex N719. The co-sensitized DSSCs showed enhanced short-circuit and open-circuit photocurrents (Jsc) and voltages (Voc), resulting in more efficient photovoltaic performance compared to N719 (PCE 7.25%). Electrochemical impedance spectroscopy (EIS) and incident photon to current efficiency (IPCE) were employed to investigate the underlying reasons for these improvements. It was found that co-sensitization effectively reduced electron recombination, resulting in a higher Voc without compromising photocurrent loss.
ISSN:1319-6103