Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application

Today, the world continuously investigates the promising potential of advanced and optimized technologies for harvesting green renewable energy sources, such as a solar tracking system (STS). This study presents an actual implementation of a single-axis solar tracking system (SAST), where an azimuth...

Full description

Bibliographic Details
Main Authors: Nasir G. Hariri, Mohammed A. AlMutawa, Ibrahim Sufian Osman, Ibrahim K. AlMadani, Abdulilah M. Almahdi, Sajid Ali
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/9/4758
Description
Summary:Today, the world continuously investigates the promising potential of advanced and optimized technologies for harvesting green renewable energy sources, such as a solar tracking system (STS). This study presents an actual implementation of a single-axis solar tracking system (SAST), where an azimuth control scheme is developed to precisely follow the sun’s orientation. This is demonstrated by computing in real-time the optimal azimuth angle based on the actual altitude, date, and time using an embedded microcontroller. At the same time, experimental comparisons using the azimuth-based control method compared with the proportional, integral, derivative (PID) control scheme and fixed-tilt PV systems (FTPV) are derived. Experimental results show that the developed azimuth solar tracker can autonomously follow the sun’s orientation primarily from time and location-based information and independent from the actual solar irradiance. Nevertheless, the electrical energies gained from all three tested systems revealed that using the sensor-based STS would increase the net energy production by 12.68% compared to the azimuth-based SAST, with an energy production increase of 7.7%. In addition, energy consumption by the azimuth-based STS is 65% greater than the energy consumption of a sensor-based STS due to the continuous movements of the tracker, regardless of the increase or change in power production within short periods.
ISSN:2076-3417