Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm)...

Full description

Bibliographic Details
Main Authors: Yu-Li Lo, Yu Liu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3956467?pdf=render
_version_ 1818978085197840384
author Yu-Li Lo
Yu Liu
author_facet Yu-Li Lo
Yu Liu
author_sort Yu-Li Lo
collection DOAJ
description Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG) shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity for a multifunctional approach using an effective delivery system, such as PEGylated liposomes, to carry epirubicin and ASOs as a potent nanomedicine for improving the clinical efficacy of chemotherapy.
first_indexed 2024-12-20T16:38:01Z
format Article
id doaj.art-203f76910f3a465a82dd7c0e29afd77c
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-20T16:38:01Z
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-203f76910f3a465a82dd7c0e29afd77c2022-12-21T19:33:06ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0193e9018010.1371/journal.pone.0090180Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.Yu-Li LoYu LiuMultidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG) shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity for a multifunctional approach using an effective delivery system, such as PEGylated liposomes, to carry epirubicin and ASOs as a potent nanomedicine for improving the clinical efficacy of chemotherapy.http://europepmc.org/articles/PMC3956467?pdf=render
spellingShingle Yu-Li Lo
Yu Liu
Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
PLoS ONE
title Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
title_full Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
title_fullStr Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
title_full_unstemmed Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
title_short Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.
title_sort reversing multidrug resistance in caco 2 by silencing mdr1 mrp1 mrp2 and bcl 2 bcl xl using liposomal antisense oligonucleotides
url http://europepmc.org/articles/PMC3956467?pdf=render
work_keys_str_mv AT yulilo reversingmultidrugresistanceincaco2bysilencingmdr1mrp1mrp2andbcl2bclxlusingliposomalantisenseoligonucleotides
AT yuliu reversingmultidrugresistanceincaco2bysilencingmdr1mrp1mrp2andbcl2bclxlusingliposomalantisenseoligonucleotides