Summary: | We propose a scheme to generate and control high-dimensional rogue waves in a coherent three-level <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Λ</mi></semantics></math></inline-formula>-type atomic system via electromagnetically induced transparency (EIT). Under EIT conditions, the probe field envelopes obey the non-integrable nonlinear Schrödinger equations (NLSE) with or without the external potential, which result from the stark (Zeeman) effect contributed by an electric (magnetic) field. By adjusting the amplitude and width of the initial pulse, we can generate the high-dimensional rogue waves and obtain the phase-transition curves of high-dimensional rogue waves. In the system, the far-detuned electric field, the random weak magnetic field, and the Gauss weak magnetic field are not conducive to the excitation of high-dimensional rogue waves. The results not only provide a theoretical basis for the experimental realization or prevention of the high-dimensional rogue waves, but also prove the possibility of generating and controlling the rogue waves in other high-dimensional non-integrable systems.
|