Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis

The paper explores the application of Steiner’s most-frequent-value (MFV) statistical method in sensor data analysis. The MFV is introduced as a powerful tool to identify the most-common value in a dataset, even when data points are scattered, unlike traditional mode calculations. Furthermore, the p...

Full description

Bibliographic Details
Main Authors: Victor V. Golovko, Oleg Kamaev, Jiansheng Sun
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/21/8856
_version_ 1797631245507624960
author Victor V. Golovko
Oleg Kamaev
Jiansheng Sun
author_facet Victor V. Golovko
Oleg Kamaev
Jiansheng Sun
author_sort Victor V. Golovko
collection DOAJ
description The paper explores the application of Steiner’s most-frequent-value (MFV) statistical method in sensor data analysis. The MFV is introduced as a powerful tool to identify the most-common value in a dataset, even when data points are scattered, unlike traditional mode calculations. Furthermore, the paper underscores the MFV method’s versatility in estimating environmental gamma background blue (the natural level of gamma radiation present in the environment, typically originating from natural sources such as rocks, soil, and cosmic rays), making it useful in scenarios where traditional statistical methods are challenging. It presents the MFV approach as a reliable technique for characterizing ambient radiation levels around large-scale experiments, such as the DEAP-3600 dark matter detector. Using the MFV alongside passive sensors such as thermoluminescent detectors and employing a bootstrapping approach, this study showcases its effectiveness in evaluating background radiation and its aptness for estimating confidence intervals. In summary, this paper underscores the importance of the MFV and bootstrapping as valuable statistical tools in various scientific fields that involve the analysis of sensor data. These tools help in estimating the most-common values and make data analysis easier, especially in complex situations, where we need to be reasonably confident about our estimated ranges. Our calculations based on MFV statistics and bootstrapping indicate that the ambient radiation level in Cube Hall at SNOLAB is 35.19 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy for 1342 h of exposure, with an uncertainty range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>3.41</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>3.59</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, corresponding to a 68.27% confidence level. In the vicinity of the DEAP-3600 water shielding, the ambient radiation level is approximately 34.80 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, with an uncertainty range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>3.58</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>3.48</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, also at a 68.27% confidence level. These findings offer crucial guidance for experimental design at SNOLAB, especially in the context of dark matter research.
first_indexed 2024-03-11T11:21:05Z
format Article
id doaj.art-204418b0c74a445d8ef2f5020d872ff0
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T11:21:05Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-204418b0c74a445d8ef2f5020d872ff02023-11-10T15:12:23ZengMDPI AGSensors1424-82202023-10-012321885610.3390/s23218856Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data AnalysisVictor V. Golovko0Oleg Kamaev1Jiansheng Sun2Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, CanadaCanadian Nuclear Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, CanadaCanadian Nuclear Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, CanadaThe paper explores the application of Steiner’s most-frequent-value (MFV) statistical method in sensor data analysis. The MFV is introduced as a powerful tool to identify the most-common value in a dataset, even when data points are scattered, unlike traditional mode calculations. Furthermore, the paper underscores the MFV method’s versatility in estimating environmental gamma background blue (the natural level of gamma radiation present in the environment, typically originating from natural sources such as rocks, soil, and cosmic rays), making it useful in scenarios where traditional statistical methods are challenging. It presents the MFV approach as a reliable technique for characterizing ambient radiation levels around large-scale experiments, such as the DEAP-3600 dark matter detector. Using the MFV alongside passive sensors such as thermoluminescent detectors and employing a bootstrapping approach, this study showcases its effectiveness in evaluating background radiation and its aptness for estimating confidence intervals. In summary, this paper underscores the importance of the MFV and bootstrapping as valuable statistical tools in various scientific fields that involve the analysis of sensor data. These tools help in estimating the most-common values and make data analysis easier, especially in complex situations, where we need to be reasonably confident about our estimated ranges. Our calculations based on MFV statistics and bootstrapping indicate that the ambient radiation level in Cube Hall at SNOLAB is 35.19 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy for 1342 h of exposure, with an uncertainty range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>3.41</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>3.59</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, corresponding to a 68.27% confidence level. In the vicinity of the DEAP-3600 water shielding, the ambient radiation level is approximately 34.80 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, with an uncertainty range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>3.58</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>3.48</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>Gy, also at a 68.27% confidence level. These findings offer crucial guidance for experimental design at SNOLAB, especially in the context of dark matter research.https://www.mdpi.com/1424-8220/23/21/8856sensor data analysismost-frequent-valuethermoluminescent dosimetersenvironmental gamma backgrounddark matterbootstrapping
spellingShingle Victor V. Golovko
Oleg Kamaev
Jiansheng Sun
Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
Sensors
sensor data analysis
most-frequent-value
thermoluminescent dosimeters
environmental gamma background
dark matter
bootstrapping
title Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
title_full Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
title_fullStr Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
title_full_unstemmed Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
title_short Unveiling Insights: Harnessing the Power of the Most-Frequent-Value Method for Sensor Data Analysis
title_sort unveiling insights harnessing the power of the most frequent value method for sensor data analysis
topic sensor data analysis
most-frequent-value
thermoluminescent dosimeters
environmental gamma background
dark matter
bootstrapping
url https://www.mdpi.com/1424-8220/23/21/8856
work_keys_str_mv AT victorvgolovko unveilinginsightsharnessingthepowerofthemostfrequentvaluemethodforsensordataanalysis
AT olegkamaev unveilinginsightsharnessingthepowerofthemostfrequentvaluemethodforsensordataanalysis
AT jianshengsun unveilinginsightsharnessingthepowerofthemostfrequentvaluemethodforsensordataanalysis