Biomarkers for acute diagnosis and management of stroke in neurointensive care units

The effectiveness of current management of critically ill stroke patients depends on rapid assessment of the type of stroke, ischemic or hemorrhagic, and on a patient′s general clinical status. Thrombolytic therapy with recombinant tissue plasminogen activator (r-tPA) is the only effective treatment...

Full description

Bibliographic Details
Main Authors: Olena Y Glushakova, Alexander V Glushakov, Emmy R Miller, Alex B Valadka, Ronald L Hayes
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2016-01-01
Series:Brain Circulation
Subjects:
Online Access:http://www.braincirculation.org/article.asp?issn=2394-8108;year=2016;volume=2;issue=1;spage=28;epage=47;aulast=Glushakova
Description
Summary:The effectiveness of current management of critically ill stroke patients depends on rapid assessment of the type of stroke, ischemic or hemorrhagic, and on a patient′s general clinical status. Thrombolytic therapy with recombinant tissue plasminogen activator (r-tPA) is the only effective treatment for ischemic stroke approved by the Food and Drug Administration (FDA), whereas no treatment has been shown to be effective for hemorrhagic stroke. Furthermore, a narrow therapeutic window and fear of precipitating intracranial hemorrhage by administering r-tPA cause many clinicians to avoid using this treatment. Thus, rapid and objective assessments of stroke type at admission would increase the number of patients with ischemic stroke receiving r-tPA treatment and thereby, improve outcome for many additional stroke patients. Considerable literature suggests that brain-specific protein biomarkers of glial [i.e. S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP)] and neuronal cells [e.g., ubiquitin C-terminal hydrolase-L1 (UCH-L1), neuron-specific enolase (NSE), αII-spectrin breakdown products SBDP120, SBDP145, and SBDP150, myelin basic protein (MBP), neurofilament light chain (NF-L), tau protein, visinin-like protein-1 (VLP 1), NR2 peptide] injury that could be detected in the cerebrospinal fluid (CSF) and peripheral blood might provide valuable and timely diagnostic information for stroke necessary to make prompt management and decisions, especially when the time of stroke onset cannot be determined. This information could include injury severity, prognosis of short-term and long-term outcomes, and discrimination of ischemic or hemorrhagic stroke. This chapter reviews the current status of the development of biomarker-based diagnosis of stroke and its potential application to improve stroke care.
ISSN:2455-4626