A note on letters of Yangian invariants

Abstract Motivated by reformulating Yangian invariants in planar N $$ \mathcal{N} $$ = 4 SYM directly as d log forms on momentum-twistor space, we propose a purely algebraic problem of determining the arguments of the d log’s, which we call “letters”, for any Yangian invariant. These are functions o...

Full description

Bibliographic Details
Main Authors: Song He, Zhenjie Li
Format: Article
Language:English
Published: SpringerOpen 2021-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2021)155
Description
Summary:Abstract Motivated by reformulating Yangian invariants in planar N $$ \mathcal{N} $$ = 4 SYM directly as d log forms on momentum-twistor space, we propose a purely algebraic problem of determining the arguments of the d log’s, which we call “letters”, for any Yangian invariant. These are functions of momentum twistors Z ’s, given by the positive coordinates α’s of parametrizations of the matrix C(α), evaluated on the support of polynomial equations C(α) · Z = 0. We provide evidence that the letters of Yangian invariants are related to the cluster algebra of Grassmannian G(4, n), which is relevant for the symbol alphabet of n-point scattering amplitudes. For n = 6, 7, the collection of letters for all Yangian invariants contains the cluster A $$ \mathcal{A} $$ coordinates of G(4, n). We determine algebraic letters of Yangian invariant associated with any “four-mass” box, which for n = 8 reproduce the 18 multiplicative-independent, algebraic symbol letters discovered recently for two-loop amplitudes.
ISSN:1029-8479