Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Two-Dimensional Population Balance Equations in Crystallization

The population balance equations (PBEs) serve as the primary governing equations for simulating the crystallization process. Two-dimensional (2D) PBEs pertain to crystals that exhibit anisotropic growth, which is characterized by changes in two internal coordinates. Because PBEs are the hyperbolic e...

Full description

Bibliographic Details
Main Authors: Cengceng Dong, Chunlei Ruan
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/14/3/234
Description
Summary:The population balance equations (PBEs) serve as the primary governing equations for simulating the crystallization process. Two-dimensional (2D) PBEs pertain to crystals that exhibit anisotropic growth, which is characterized by changes in two internal coordinates. Because PBEs are the hyperbolic equations, it becomes imperative to establish a high-resolution scheme to reduce numerical diffusion and numerical dispersion, thereby ensuring accurate crystal size distribution. This paper uses Euler’s first-order explicit (EE) method–Peridynamic Differential Operator (PDDO) to solve 2D PBE, namely, the EE method for discretizing the time derivative and the PDDO for discretizing the internal crystal-size derivative. Five examples, including size-independent growth with smooth and non-smooth distributions, size-dependent growth, nucleation, and size-independent/dependent growth for batch crystallization are considered. The results show that the EE–PDDO method is more accurate than the HR method and that it is as good as the fifth-order Weighted Essential Non-Oscillatory (WENO) method in solving 2D PBE. This study extends the EE–PDDO method to the simulation of 2D PBE, and the advantages of the EE-PDDO method in dealing with discontinuous and sharp front problems are demonstrated.
ISSN:2073-4352