Detecting anomalies from liquid transfer videos in automated laboratory setting

In this work, we address the problem of detecting anomalies in a certain laboratory automation setting. At first, we collect video images of liquid transfer in automated laboratory experiments. We mimic the real-world challenges of developing an anomaly detection model by considering two points. Fir...

Full description

Bibliographic Details
Main Authors: Najibul Haque Sarker, Zaber Abdul Hakim, Ali Dabouei, Mostofa Rafid Uddin, Zachary Freyberg, Andy MacWilliams, Joshua Kangas, Min Xu
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-05-01
Series:Frontiers in Molecular Biosciences
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmolb.2023.1147514/full
Description
Summary:In this work, we address the problem of detecting anomalies in a certain laboratory automation setting. At first, we collect video images of liquid transfer in automated laboratory experiments. We mimic the real-world challenges of developing an anomaly detection model by considering two points. First, the size of the collected dataset is set to be relatively small compared to large-scale video datasets. Second, the dataset has a class imbalance problem where the majority of the collected videos are from abnormal events. Consequently, the existing learning-based video anomaly detection methods do not perform well. To this end, we develop a practical human-engineered feature extraction method to detect anomalies from the liquid transfer video images. Our simple yet effective method outperforms state-of-the-art anomaly detection methods with a notable margin. In particular, the proposed method provides 19% and 76% average improvement in AUC and Equal Error Rate, respectively. Our method also quantifies the anomalies and provides significant benefits for deployment in the real-world experimental setting.
ISSN:2296-889X