A Fully Automatic Framework for Parkinson’s Disease Diagnosis by Multi-Modality Images

BackgroundParkinson’s disease (PD) is a prevalent long-term neurodegenerative disease. Though the criteria of PD diagnosis are relatively well defined, current diagnostic procedures using medical images are labor-intensive and expertise-demanding. Hence, highly integrated automatic diagnostic algori...

Full description

Bibliographic Details
Main Authors: Jiahang Xu, Fangyang Jiao, Yechong Huang, Xinzhe Luo, Qian Xu, Ling Li, Xueling Liu, Chuantao Zuo, Ping Wu, Xiahai Zhuang
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-08-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnins.2019.00874/full
Description
Summary:BackgroundParkinson’s disease (PD) is a prevalent long-term neurodegenerative disease. Though the criteria of PD diagnosis are relatively well defined, current diagnostic procedures using medical images are labor-intensive and expertise-demanding. Hence, highly integrated automatic diagnostic algorithms are desirable.MethodsIn this work, we propose an end-to-end multi-modality diagnostic framework, including segmentation, registration, feature extraction and machine learning, to analyze the features of striatum for PD diagnosis. Multi-modality images, including T1-weighted MRI and 11C-CFT PET, are integrated into the proposed framework. The reliability of this method is validated on a dataset with the paired images from 49 PD subjects and 18 Normal (NL) subjects.ResultsWe obtained a promising diagnostic accuracy in the PD/NL classification task. Meanwhile, several comparative experiments were conducted to validate the performance of the proposed framework.ConclusionWe demonstrated that (1) the automatic segmentation provides accurate results for the diagnostic framework, (2) the method combining multi-modality images generates a better prediction accuracy than the method with single-modality PET images, and (3) the volume of the striatum is proved to be irrelevant to PD diagnosis.
ISSN:1662-453X