Security Enhancement for Deep Reinforcement Learning-Based Strategy in Energy-Efficient Wireless Sensor Networks

Energy efficiency and security issues are the main concerns in wireless sensor networks (WSNs) because of limited energy resources and the broadcast nature of wireless communication. Therefore, how to improve the energy efficiency of WSNs while enhancing security performance has attracted widespread...

Full description

Bibliographic Details
Main Authors: Liyazhou Hu, Chao Han, Xiaojun Wang, Han Zhu, Jian Ouyang
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/6/1993
Description
Summary:Energy efficiency and security issues are the main concerns in wireless sensor networks (WSNs) because of limited energy resources and the broadcast nature of wireless communication. Therefore, how to improve the energy efficiency of WSNs while enhancing security performance has attracted widespread attention. In order to solve this problem, this paper proposes a new deep reinforcement learning (DRL)-based strategy, i.e., DeepNR strategy, to enhance the energy efficiency and security performance of WSN. Specifically, the proposed DeepNR strategy approximates the Q-value by designing a deep neural network (DNN) to adaptively learn the state information. It also designs DRL-based multi-level decision-making to learn and optimize the data transmission paths in real time, which eventually achieves accurate prediction and decision-making of the network. To further enhance security performance, the DeepNR strategy includes a defense mechanism that responds to detected attacks in real time to ensure the normal operation of the network. In addition, DeepNR adaptively adjusts its strategy to cope with changing network environments and attack patterns through deep learning models. Experimental results show that the proposed DeepNR outperforms the conventional methods, demonstrating a remarkable 30% improvement in network lifespan, a 25% increase in network data throughput, and a 20% enhancement in security measures.
ISSN:1424-8220