The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system
Anthropogenic disturbance to natural hydrological connectivity, both longitudinal, lateral, and vertical, is threatening the ecological integrity of the freshwater realm. River-floodplain system is particularly adversely affected by the reduction in lateral hydrological connectivity (LHC), represent...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-02-01
|
Series: | Ecological Indicators |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1470160X20310517 |
_version_ | 1818843804227076096 |
---|---|
author | Rui Dong Yuyu Wang Cai Lu Guangchun Lei Li Wen |
author_facet | Rui Dong Yuyu Wang Cai Lu Guangchun Lei Li Wen |
author_sort | Rui Dong |
collection | DOAJ |
description | Anthropogenic disturbance to natural hydrological connectivity, both longitudinal, lateral, and vertical, is threatening the ecological integrity of the freshwater realm. River-floodplain system is particularly adversely affected by the reduction in lateral hydrological connectivity (LHC), representing one of major biodiversity hotspots under increasingly pressure. Many studies have demonstrated that LHC has great influence on the spatial variations of flora and fauna communities (i.e. spatial β diversity) through facilitating dispersal. However, to fully understand the impact of anthropogenic disturbances on biodiversity, we must also understand how ecological communities change over time (i.e. temporal β diversity, TBI) and the underlying processes. To evaluate the processes structuring ecological communities, we examined the macroinvertebrate TBI in habitats along the gradient of LHC for an entire hydrological cycle in West Dongting Lake, a Ramsar-listed floodplain wetland at the middle reach of Yangtze River. Our results showed that the total spatial β diversity fluctuated with water level and peaked at high-water phase, and LHC was the driving forcing affecting both species richness and abundance in all hydrological periods. In particular, species richness and abundance were highest in habitats with medium LHC levels for water-rising and high-water periods reflecting the intermediate disturbance hypothesis except for water-recessing, during which there was no clear pattern. While replacement determined β diversity in most sites at water-rising and high-water phases, the contribution of nestedness were high during water-withdrawing phase. From water-rising to high-water, macroinvertebrates from other habitats spread to the modified mudflats, which had the lowest LHC, along with the floods. During water-withdrawing period, β diversity and its turnover component of all habitats were low compared with other hydrological phases. Temporal β diversity analysis illustrated that the species dispersal was the main mechanism underlying the temporal and spatial variations in the observed community patterns. These findings demonstrated that hydrological connectivity was critical to maintaining the ecological integrity of river-floodplain ecosystems. |
first_indexed | 2024-12-19T05:03:41Z |
format | Article |
id | doaj.art-206ba67eac804f45b932b1aaf8b49c88 |
institution | Directory Open Access Journal |
issn | 1470-160X |
language | English |
last_indexed | 2024-12-19T05:03:41Z |
publishDate | 2021-02-01 |
publisher | Elsevier |
record_format | Article |
series | Ecological Indicators |
spelling | doaj.art-206ba67eac804f45b932b1aaf8b49c882022-12-21T20:35:01ZengElsevierEcological Indicators1470-160X2021-02-01121107112The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain systemRui Dong0Yuyu Wang1Cai Lu2Guangchun Lei3Li Wen4School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, ChinaSchool of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China; Corresponding authors.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, ChinaSchool of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China; Corresponding authors.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China; Science, Economics and Insights Division, Department of Planning, Industry and Environment, Sydney, AustraliaAnthropogenic disturbance to natural hydrological connectivity, both longitudinal, lateral, and vertical, is threatening the ecological integrity of the freshwater realm. River-floodplain system is particularly adversely affected by the reduction in lateral hydrological connectivity (LHC), representing one of major biodiversity hotspots under increasingly pressure. Many studies have demonstrated that LHC has great influence on the spatial variations of flora and fauna communities (i.e. spatial β diversity) through facilitating dispersal. However, to fully understand the impact of anthropogenic disturbances on biodiversity, we must also understand how ecological communities change over time (i.e. temporal β diversity, TBI) and the underlying processes. To evaluate the processes structuring ecological communities, we examined the macroinvertebrate TBI in habitats along the gradient of LHC for an entire hydrological cycle in West Dongting Lake, a Ramsar-listed floodplain wetland at the middle reach of Yangtze River. Our results showed that the total spatial β diversity fluctuated with water level and peaked at high-water phase, and LHC was the driving forcing affecting both species richness and abundance in all hydrological periods. In particular, species richness and abundance were highest in habitats with medium LHC levels for water-rising and high-water periods reflecting the intermediate disturbance hypothesis except for water-recessing, during which there was no clear pattern. While replacement determined β diversity in most sites at water-rising and high-water phases, the contribution of nestedness were high during water-withdrawing phase. From water-rising to high-water, macroinvertebrates from other habitats spread to the modified mudflats, which had the lowest LHC, along with the floods. During water-withdrawing period, β diversity and its turnover component of all habitats were low compared with other hydrological phases. Temporal β diversity analysis illustrated that the species dispersal was the main mechanism underlying the temporal and spatial variations in the observed community patterns. These findings demonstrated that hydrological connectivity was critical to maintaining the ecological integrity of river-floodplain ecosystems.http://www.sciencedirect.com/science/article/pii/S1470160X20310517Hydrological connectivityNestednessTurnoverDispersal abilityB-C plots |
spellingShingle | Rui Dong Yuyu Wang Cai Lu Guangchun Lei Li Wen The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system Ecological Indicators Hydrological connectivity Nestedness Turnover Dispersal ability B-C plots |
title | The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system |
title_full | The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system |
title_fullStr | The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system |
title_full_unstemmed | The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system |
title_short | The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system |
title_sort | seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river floodplain system |
topic | Hydrological connectivity Nestedness Turnover Dispersal ability B-C plots |
url | http://www.sciencedirect.com/science/article/pii/S1470160X20310517 |
work_keys_str_mv | AT ruidong theseasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT yuyuwang theseasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT cailu theseasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT guangchunlei theseasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT liwen theseasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT ruidong seasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT yuyuwang seasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT cailu seasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT guangchunlei seasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem AT liwen seasonalityofmacroinvertebratebdiversityalongthegradientofhydrologicalconnectivityinadynamicriverfloodplainsystem |