Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution
The present study aims to prepare waste water caltrop (Trapanatans L.) epicarp (WCS)-based adsorbents such as raw WCS (WCS-Raw), citric acid-grafted WCS (WCS-CA), acrylamide-grafted WCS (WCS-AM), and calcined WCS (WCS–Si) for Ni(II) removal from aqueous solution in batch adsorption process. The phys...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-11-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844023090709 |
_version_ | 1827615848098955264 |
---|---|
author | Muhammad Zobayer Bin Mukhlish Shekh Nazibunnesa Shariful Islam Abu Saleh Al Mahmood Md Tamez Uddin |
author_facet | Muhammad Zobayer Bin Mukhlish Shekh Nazibunnesa Shariful Islam Abu Saleh Al Mahmood Md Tamez Uddin |
author_sort | Muhammad Zobayer Bin Mukhlish |
collection | DOAJ |
description | The present study aims to prepare waste water caltrop (Trapanatans L.) epicarp (WCS)-based adsorbents such as raw WCS (WCS-Raw), citric acid-grafted WCS (WCS-CA), acrylamide-grafted WCS (WCS-AM), and calcined WCS (WCS–Si) for Ni(II) removal from aqueous solution in batch adsorption process. The physical and chemical properties of the prepared adsorbents were investigated by different characterization techniques such as scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption analyses, and pH at the Point of Zero Charge (pHpzc) in order to assess the suitability and effectiveness of the adsorbents for the removal of Ni(II) by understanding their surface morphology, chemical composition, porosity, and surface charge properties. The experimental Ni(II) adsorption data followed both the Langmuir isotherm and the pseudo-second-order kinetic model suggesting the adsorption process on the prepared adsorbents is well-described by these models. The modified adsorbents WCS-CA, WCS-AM, and WCS-Si exhibited a maximum adsorption capacity of 52.08, 40.32, and 158.73 mg/g, respectively, while WCS-Raw had a capacity of 29.06 mg/g. The thermodynamic study revealed that the adsorption process was feasible, spontaneous, and endothermic. The desorption study demonstrated that the adsorbents could be reused for multiple cycles with minimal loss of activity. The present work evidenced the potential practical applicability and sustainability of the WCS-based adsorbents as promising adsorbents in treating and removing Ni(II) from wastewater. |
first_indexed | 2024-03-09T09:17:31Z |
format | Article |
id | doaj.art-207732172d7846639b34756077abdd38 |
institution | Directory Open Access Journal |
issn | 2405-8440 |
language | English |
last_indexed | 2024-03-09T09:17:31Z |
publishDate | 2023-11-01 |
publisher | Elsevier |
record_format | Article |
series | Heliyon |
spelling | doaj.art-207732172d7846639b34756077abdd382023-12-02T07:04:30ZengElsevierHeliyon2405-84402023-11-01911e21862Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solutionMuhammad Zobayer Bin Mukhlish0Shekh Nazibunnesa1Shariful Islam2Abu Saleh Al Mahmood3Md Tamez Uddin4Corresponding author.; Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, BangladeshDepartment of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, BangladeshDepartment of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, BangladeshDepartment of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, BangladeshDepartment of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, BangladeshThe present study aims to prepare waste water caltrop (Trapanatans L.) epicarp (WCS)-based adsorbents such as raw WCS (WCS-Raw), citric acid-grafted WCS (WCS-CA), acrylamide-grafted WCS (WCS-AM), and calcined WCS (WCS–Si) for Ni(II) removal from aqueous solution in batch adsorption process. The physical and chemical properties of the prepared adsorbents were investigated by different characterization techniques such as scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption analyses, and pH at the Point of Zero Charge (pHpzc) in order to assess the suitability and effectiveness of the adsorbents for the removal of Ni(II) by understanding their surface morphology, chemical composition, porosity, and surface charge properties. The experimental Ni(II) adsorption data followed both the Langmuir isotherm and the pseudo-second-order kinetic model suggesting the adsorption process on the prepared adsorbents is well-described by these models. The modified adsorbents WCS-CA, WCS-AM, and WCS-Si exhibited a maximum adsorption capacity of 52.08, 40.32, and 158.73 mg/g, respectively, while WCS-Raw had a capacity of 29.06 mg/g. The thermodynamic study revealed that the adsorption process was feasible, spontaneous, and endothermic. The desorption study demonstrated that the adsorbents could be reused for multiple cycles with minimal loss of activity. The present work evidenced the potential practical applicability and sustainability of the WCS-based adsorbents as promising adsorbents in treating and removing Ni(II) from wastewater.http://www.sciencedirect.com/science/article/pii/S2405844023090709Trapa natans L.Ni(II) ionAdsorptionIsothermKineticsModified adsorbent |
spellingShingle | Muhammad Zobayer Bin Mukhlish Shekh Nazibunnesa Shariful Islam Abu Saleh Al Mahmood Md Tamez Uddin Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution Heliyon Trapa natans L. Ni(II) ion Adsorption Isotherm Kinetics Modified adsorbent |
title | Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution |
title_full | Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution |
title_fullStr | Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution |
title_full_unstemmed | Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution |
title_short | Preparation of chemically and thermally modified water caltrop epicarp (Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution |
title_sort | preparation of chemically and thermally modified water caltrop epicarp trapa natans l adsorbent for enhanced adsorption of ni ii from aqueous solution |
topic | Trapa natans L. Ni(II) ion Adsorption Isotherm Kinetics Modified adsorbent |
url | http://www.sciencedirect.com/science/article/pii/S2405844023090709 |
work_keys_str_mv | AT muhammadzobayerbinmukhlish preparationofchemicallyandthermallymodifiedwatercaltropepicarptrapanatansladsorbentforenhancedadsorptionofniiifromaqueoussolution AT shekhnazibunnesa preparationofchemicallyandthermallymodifiedwatercaltropepicarptrapanatansladsorbentforenhancedadsorptionofniiifromaqueoussolution AT sharifulislam preparationofchemicallyandthermallymodifiedwatercaltropepicarptrapanatansladsorbentforenhancedadsorptionofniiifromaqueoussolution AT abusalehalmahmood preparationofchemicallyandthermallymodifiedwatercaltropepicarptrapanatansladsorbentforenhancedadsorptionofniiifromaqueoussolution AT mdtamezuddin preparationofchemicallyandthermallymodifiedwatercaltropepicarptrapanatansladsorbentforenhancedadsorptionofniiifromaqueoussolution |