The Influence of the Cooling Bores on Crystal Orientation and Lattice Parameter in Single-Crystalline Cored Turbine Blades

The areas located near the cooling bores of single-crystalline cored turbine blades made of nickel-based CMSX-4 superalloy were studied. The blades were solidified by the vertical Bridgman technique in the industrial ALD furnace. Longitudinal sections of the blades were studied by Scanning Electron...

Full description

Bibliographic Details
Main Authors: Jacek Krawczyk, Włodzimierz Bogdanowicz, Jan Sieniawski
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/14/3842
Description
Summary:The areas located near the cooling bores of single-crystalline cored turbine blades made of nickel-based CMSX-4 superalloy were studied. The blades were solidified by the vertical Bridgman technique in the industrial ALD furnace. Longitudinal sections of the blades were studied by Scanning Electron Microscopy, X-ray diffraction topography, X-ray diffraction measurements of the γ′-phase lattice parameter <i>a</i>, and the α angle of the primary crystal orientation. The local changes in α were analyzed in relation to the changes of the dendrite’s growth direction near the cooling bores. It was found that in the area approximately 3 ÷ 4 mm wide around the cooling bores, changes of α and <i>a</i>, both in the blade root and in the airfoil occurred. The local temperature distribution near the cooling bores formed a curved macroscopic solidification front, which caused changes in the chemical composition and, consequently, changes in the <i>a</i> value in a range of 0.002 Å to 0.014 Å. The mechanism of alloying elements segregation by tips of the dendrites on the bent solidification front was proposed. The multi-scale analysis that allows determining a relation between processes proceed both on a millimeter-scale and a micrometric and nanometric scale, was applied in the studies.
ISSN:1996-1944