Summary: | This study proposed a colorimetric transformation and spectral features-based oilseed rape extraction algorithm (CSRA) to map oilseed rape at the provincial scale as a first step towards country-scale coverage. Using a stepwise analysis strategy, our method gradually separates vegetation from non-vegetation, crop from non-crop, and oilseed rape from winter wheat. The wide-field view (WFV) images from Chinese Gaofen satellite no. 1 (GF-1) at six continuous flowering stages in Wuxue City, Hubei Province, China are used to extract the unique characteristics of oilseed rape during the flowering period and predict the parameter of the CSRA method. The oilseed rape maps of Hubei Province from 2014 to 2017 are obtained automatically based on the CSRA method using GF-1 WFV images. As a result, the CSRA-derived provincial oilseed rape maps achieved at least 85% overall accuracy of spatial consistency when comparing with local reference oilseed rape maps and lower than 20% absolute error of provincial planting areas when comparing with agricultural census data. The robustness of the CSRA method is also tested on other satellite images including one panchromatic and multispectral image from GF-2 and two RapidEye images. Moreover, the comparison between the CSRA and other previous methods is discussed using the six GF-1 WFV images of Wuxue City, showing the proposed method has better mapping accuracy than other tested methods. These results highlight the potential of our method for accurate extraction and regional mapping capacity for oilseed rape.
|