Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets

Segmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via...

Full description

Bibliographic Details
Main Authors: Alireza Foroozani Behbahani, Vagelis Harmandaris
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/5/830
_version_ 1797542166581477376
author Alireza Foroozani Behbahani
Vagelis Harmandaris
author_facet Alireza Foroozani Behbahani
Vagelis Harmandaris
author_sort Alireza Foroozani Behbahani
collection DOAJ
description Segmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions. In the vicinity of the model nanosheets (distances less than ≈2 nm), the dynamics slows down; the effect becomes significantly stronger with increasing the concentration of the surface functional groups, and hence increasing polymer/surface specific interactions. Upon decreasing temperature, the ratios of the interfacial segmental relaxation times to the respective bulk relaxation times increase, revealing the stronger temperature dependence of the interfacial segmental dynamics relative to the bulk dynamics. This heterogeneity in temperature dependence leads to the shortcoming of the time-temperature superposition principle for describing the segmental dynamics of the model confined melts. The alteration of the segmental dynamics at different distances, <i>d</i>, from the surfaces is described by a temperature shift, <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><msub><mi>T</mi><mi>seg</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (roughly speaking, shift of a characteristic temperature). Next, to a given nanosheet, i-PMMA has a larger value of <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><msub><mi>T</mi><mi>seg</mi></msub></mrow></semantics></math></inline-formula> than a-PMMA and s-PMMA. This trend correlates with the better interfacial packing and longer trains of i-PMMA chains. The backbone torsional autocorrelation functions are shown in the frequency domain and are qualitatively compared to the experimental dielectric loss spectra for the segmental <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-relaxation in polymer nanocomposites. The <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>ε</mi><mi mathvariant="normal">T</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (analogous of dielectric loss, <inline-formula><math display="inline"><semantics><mrow><msup><mi>ε</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, for torsional motion) curves of the model confined melts are broader (toward lower frequencies) and have lower amplitudes relative to the corresponding bulk curves; however, the peak frequencies of the <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>ε</mi><mi mathvariant="normal">T</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> curves are only slightly affected.
first_indexed 2024-03-10T13:25:49Z
format Article
id doaj.art-208dd0ad239b494f8c94913500f8b50b
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-10T13:25:49Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-208dd0ad239b494f8c94913500f8b50b2023-11-21T09:36:57ZengMDPI AGPolymers2073-43602021-03-0113583010.3390/polym13050830Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene SheetsAlireza Foroozani Behbahani0Vagelis Harmandaris1Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, GreeceInstitute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, GreeceSegmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions. In the vicinity of the model nanosheets (distances less than ≈2 nm), the dynamics slows down; the effect becomes significantly stronger with increasing the concentration of the surface functional groups, and hence increasing polymer/surface specific interactions. Upon decreasing temperature, the ratios of the interfacial segmental relaxation times to the respective bulk relaxation times increase, revealing the stronger temperature dependence of the interfacial segmental dynamics relative to the bulk dynamics. This heterogeneity in temperature dependence leads to the shortcoming of the time-temperature superposition principle for describing the segmental dynamics of the model confined melts. The alteration of the segmental dynamics at different distances, <i>d</i>, from the surfaces is described by a temperature shift, <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><msub><mi>T</mi><mi>seg</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (roughly speaking, shift of a characteristic temperature). Next, to a given nanosheet, i-PMMA has a larger value of <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><msub><mi>T</mi><mi>seg</mi></msub></mrow></semantics></math></inline-formula> than a-PMMA and s-PMMA. This trend correlates with the better interfacial packing and longer trains of i-PMMA chains. The backbone torsional autocorrelation functions are shown in the frequency domain and are qualitatively compared to the experimental dielectric loss spectra for the segmental <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-relaxation in polymer nanocomposites. The <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>ε</mi><mi mathvariant="normal">T</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (analogous of dielectric loss, <inline-formula><math display="inline"><semantics><mrow><msup><mi>ε</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, for torsional motion) curves of the model confined melts are broader (toward lower frequencies) and have lower amplitudes relative to the corresponding bulk curves; however, the peak frequencies of the <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>ε</mi><mi mathvariant="normal">T</mi><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> curves are only slightly affected.https://www.mdpi.com/2073-4360/13/5/830segmental dynamicsα-relaxationconfinementinterfacespoly(methyl methacrylate)tacticity
spellingShingle Alireza Foroozani Behbahani
Vagelis Harmandaris
Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
Polymers
segmental dynamics
α-relaxation
confinement
interfaces
poly(methyl methacrylate)
tacticity
title Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
title_full Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
title_fullStr Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
title_full_unstemmed Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
title_short Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets
title_sort gradient of segmental dynamics in stereoregular poly methyl methacrylate melts confined between pristine or oxidized graphene sheets
topic segmental dynamics
α-relaxation
confinement
interfaces
poly(methyl methacrylate)
tacticity
url https://www.mdpi.com/2073-4360/13/5/830
work_keys_str_mv AT alirezaforoozanibehbahani gradientofsegmentaldynamicsinstereoregularpolymethylmethacrylatemeltsconfinedbetweenpristineoroxidizedgraphenesheets
AT vagelisharmandaris gradientofsegmentaldynamicsinstereoregularpolymethylmethacrylatemeltsconfinedbetweenpristineoroxidizedgraphenesheets