Deprotometalation-Iodolysis and Direct Iodination of 1-Arylated 7-Azaindoles: Reactivity Studies and Molecule Properties

Five protocols were first compared for the copper-catalyzed C-N bond formation between 7-azaindole and aryl/heteroaryl iodides/bromides. The 1-arylated 7-azaindoles thus obtained were subjected to deprotometalation-iodolysis sequences using lithium 2,2,6,6-tetramethylpiperidide as the base and the c...

Full description

Bibliographic Details
Main Authors: Mohamed Yacine Ameur Messaoud, Ghenia Bentabed-Ababsa, Ziad Fajloun, Monzer Hamze, Yury S. Halauko, Oleg A. Ivashkevich, Vadim E. Matulis, Thierry Roisnel, Vincent Dorcet, Florence Mongin
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/20/6314
Description
Summary:Five protocols were first compared for the copper-catalyzed C-N bond formation between 7-azaindole and aryl/heteroaryl iodides/bromides. The 1-arylated 7-azaindoles thus obtained were subjected to deprotometalation-iodolysis sequences using lithium 2,2,6,6-tetramethylpiperidide as the base and the corresponding zinc diamide as an in situ trap. The reactivity of the substrate was discussed in light of the calculated atomic charges and the p<i>K</i><sub>a</sub> values. The behavior of the 1-arylated 7-azaindoles in direct iodination was then studied, and the results explained by considering the HOMO orbital coefficients and the atomic charges. Finally, some of the iodides generated, generally original, were involved in the <i>N</i>-arylation of indole. While crystallographic data were collected for fifteen of the synthesized compounds, biological properties (antimicrobial, antifungal and antioxidant activity) were evaluated for others.
ISSN:1420-3049