Toward a New Theory of the Fractional Quantum Hall Effect

The fractional quantum Hall effect was experimentally discovered in 1982. It was observed that the Hall conductivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mi...

Full description

Bibliographic Details
Main Author: Sergey A. Mikhailov
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/14/3/297
_version_ 1797318369432567808
author Sergey A. Mikhailov
author_facet Sergey A. Mikhailov
author_sort Sergey A. Mikhailov
collection DOAJ
description The fractional quantum Hall effect was experimentally discovered in 1982. It was observed that the Hall conductivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mi>y</mi><mi>x</mi></mrow></msub></semantics></math></inline-formula> of a two-dimensional electron system is quantized, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>y</mi><mi>x</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><mn>2</mn></msup><mo>/</mo><mn>3</mn><mi>h</mi></mrow></semantics></math></inline-formula>, in the vicinity of the Landau level filling factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></semantics></math></inline-formula>. In 1983, Laughlin proposed a trial many-body wave function, which he claimed described a “new state of matter”—a homogeneous incompressible liquid with fractionally charged quasiparticles. Here, I develop an exact diagonalization theory that allows one to calculate the energy and other physical properties of the ground and excited states of a system of <i>N</i> two-dimensional Coulomb interacting electrons in a strong magnetic field. I analyze the energies, electron densities, and other physical properties of the systems with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≤</mo><mn>7</mn></mrow></semantics></math></inline-formula> electrons continuously as a function of magnetic field in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>4</mn><mo>≲</mo><mi>ν</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The results show that both the ground and excited states of the system resemble a sliding Wigner crystal whose parameters are influenced by the magnetic field. Energy gaps in the many-particle spectra appear and disappear as the magnetic field changes. I also calculate the physical properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></semantics></math></inline-formula> Laughlin state for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≤</mo><mn>8</mn></mrow></semantics></math></inline-formula> and compare the results with the exact ones. This comparison, as well as an analysis of some other statements published in the literature, show that the Laughlin state and its fractionally charged excitations do not describe the physical reality, neither at small <i>N</i> nor in the thermodynamic limit. The results obtained shed new light on the nature of the ground and excited states in the fractional quantum Hall effect.
first_indexed 2024-03-08T03:51:27Z
format Article
id doaj.art-209d381c06414b9ca13e4e22cfc07cde
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-08T03:51:27Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-209d381c06414b9ca13e4e22cfc07cde2024-02-09T15:19:30ZengMDPI AGNanomaterials2079-49912024-01-0114329710.3390/nano14030297Toward a New Theory of the Fractional Quantum Hall EffectSergey A. Mikhailov0Institute of Physics, University of Augsburg, D-86135 Augsburg, GermanyThe fractional quantum Hall effect was experimentally discovered in 1982. It was observed that the Hall conductivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mi>y</mi><mi>x</mi></mrow></msub></semantics></math></inline-formula> of a two-dimensional electron system is quantized, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>y</mi><mi>x</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><mn>2</mn></msup><mo>/</mo><mn>3</mn><mi>h</mi></mrow></semantics></math></inline-formula>, in the vicinity of the Landau level filling factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></semantics></math></inline-formula>. In 1983, Laughlin proposed a trial many-body wave function, which he claimed described a “new state of matter”—a homogeneous incompressible liquid with fractionally charged quasiparticles. Here, I develop an exact diagonalization theory that allows one to calculate the energy and other physical properties of the ground and excited states of a system of <i>N</i> two-dimensional Coulomb interacting electrons in a strong magnetic field. I analyze the energies, electron densities, and other physical properties of the systems with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≤</mo><mn>7</mn></mrow></semantics></math></inline-formula> electrons continuously as a function of magnetic field in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>4</mn><mo>≲</mo><mi>ν</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The results show that both the ground and excited states of the system resemble a sliding Wigner crystal whose parameters are influenced by the magnetic field. Energy gaps in the many-particle spectra appear and disappear as the magnetic field changes. I also calculate the physical properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></semantics></math></inline-formula> Laughlin state for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≤</mo><mn>8</mn></mrow></semantics></math></inline-formula> and compare the results with the exact ones. This comparison, as well as an analysis of some other statements published in the literature, show that the Laughlin state and its fractionally charged excitations do not describe the physical reality, neither at small <i>N</i> nor in the thermodynamic limit. The results obtained shed new light on the nature of the ground and excited states in the fractional quantum Hall effect.https://www.mdpi.com/2079-4991/14/3/297fractional quantum Hall effectexact diagonalizationtwo-dimensional electron gaselectron–electron interaction
spellingShingle Sergey A. Mikhailov
Toward a New Theory of the Fractional Quantum Hall Effect
Nanomaterials
fractional quantum Hall effect
exact diagonalization
two-dimensional electron gas
electron–electron interaction
title Toward a New Theory of the Fractional Quantum Hall Effect
title_full Toward a New Theory of the Fractional Quantum Hall Effect
title_fullStr Toward a New Theory of the Fractional Quantum Hall Effect
title_full_unstemmed Toward a New Theory of the Fractional Quantum Hall Effect
title_short Toward a New Theory of the Fractional Quantum Hall Effect
title_sort toward a new theory of the fractional quantum hall effect
topic fractional quantum Hall effect
exact diagonalization
two-dimensional electron gas
electron–electron interaction
url https://www.mdpi.com/2079-4991/14/3/297
work_keys_str_mv AT sergeyamikhailov towardanewtheoryofthefractionalquantumhalleffect