Dietary Complex and Slow Digestive Carbohydrates Promote Bone Mass and Improve Bone Microarchitecture during Catch-Up Growth in Rats

Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired...

Full description

Bibliographic Details
Main Authors: Pilar Bueno-Vargas, Manuel Manzano, Íñigo M. Pérez-Castillo, Ricardo Rueda, José M. López-Pedrosa
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/14/6/1303
Description
Summary:Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired microarchitecture. The present study evaluated the effects of a diet containing slow (SDC) or rapid (RDC) digestible carbohydrates on bone quality parameters during the catch-up growth period in a model of diet-induced stunted rats. The food restriction period negatively impacted BMD, BMC, and microarchitecture of appendicular and axial bones. The SDC diet was shown to improve BMD and BMC of appendicular and axial bones after a four-week refeeding period in comparison with the RDC diet. In the same line, the micro-CT analysis revealed that the trabecular microarchitecture of tibiae and vertebrae was positively impacted by the dietary intervention with SDC compared to RDC. Furthermore, features of the cortical microstructure of vertebra bones were also improved in the SDC group animals. Similarly, animals allocated to the SDC diet displayed modest improvements in growth plate thickness, surface, and volume compared to the RDC group. Diets containing the described SDC blend might contribute to an adequate bone formation during catch-up growth thus increasing peak bone mass, which could be linked to reduced fracture risk later in life in individuals undergoing transient undernutrition during early life.
ISSN:2072-6643