Neuromorphic Computing via Fission‐based Broadband Frequency Generation

Abstract The performance limitations of traditional computer architectures have led to the rise of brain‐inspired hardware, with optical solutions gaining popularity due to the energy efficiency, high speed, and scalability of linear operations. However, the use of optics to emulate the synaptic act...

Full description

Bibliographic Details
Main Authors: Bennet Fischer, Mario Chemnitz, Yi Zhu, Nicolas Perron, Piotr Roztocki, Benjamin MacLellan, Luigi Di Lauro, A. Aadhi, Cristina Rimoldi, Tiago H. Falk, Roberto Morandotti
Format: Article
Language:English
Published: Wiley 2023-12-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202303835
_version_ 1827582828814008320
author Bennet Fischer
Mario Chemnitz
Yi Zhu
Nicolas Perron
Piotr Roztocki
Benjamin MacLellan
Luigi Di Lauro
A. Aadhi
Cristina Rimoldi
Tiago H. Falk
Roberto Morandotti
author_facet Bennet Fischer
Mario Chemnitz
Yi Zhu
Nicolas Perron
Piotr Roztocki
Benjamin MacLellan
Luigi Di Lauro
A. Aadhi
Cristina Rimoldi
Tiago H. Falk
Roberto Morandotti
author_sort Bennet Fischer
collection DOAJ
description Abstract The performance limitations of traditional computer architectures have led to the rise of brain‐inspired hardware, with optical solutions gaining popularity due to the energy efficiency, high speed, and scalability of linear operations. However, the use of optics to emulate the synaptic activity of neurons has remained a challenge since the integration of nonlinear nodes is power‐hungry and, thus, hard to scale. Neuromorphic wave computing offers a new paradigm for energy‐efficient information processing, building upon transient and passively nonlinear interactions between optical modes in a waveguide. Here, an implementation of this concept is presented using broadband frequency conversion by coherent higher‐order soliton fission in a single‐mode fiber. It is shown that phase encoding on femtosecond pulses at the input, alongside frequency selection and weighting at the system output, makes transient spectro‐temporal system states interpretable and allows for the energy‐efficient emulation of various digital neural networks. The experiments in a compact, fully fiber‐integrated setup substantiate an anticipated enhancement in computational performance with increasing system nonlinearity. The findings suggest that broadband frequency generation, accessible on‐chip and in‐fiber with off‐the‐shelf components, may challenge the traditional approach to node‐based brain‐inspired hardware design, ultimately leading to energy‐efficient, scalable, and dependable computing with minimal optical hardware requirements.
first_indexed 2024-03-08T22:58:13Z
format Article
id doaj.art-20ae07be913b402384a9da8c351861a9
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-03-08T22:58:13Z
publishDate 2023-12-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-20ae07be913b402384a9da8c351861a92023-12-16T04:16:14ZengWileyAdvanced Science2198-38442023-12-011035n/an/a10.1002/advs.202303835Neuromorphic Computing via Fission‐based Broadband Frequency GenerationBennet Fischer0Mario Chemnitz1Yi Zhu2Nicolas Perron3Piotr Roztocki4Benjamin MacLellan5Luigi Di Lauro6A. Aadhi7Cristina Rimoldi8Tiago H. Falk9Roberto Morandotti10Institut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaInstitut National de la Recherche Scientifique – Énergie Matériaux et Télécommunications 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X1S2 CanadaAbstract The performance limitations of traditional computer architectures have led to the rise of brain‐inspired hardware, with optical solutions gaining popularity due to the energy efficiency, high speed, and scalability of linear operations. However, the use of optics to emulate the synaptic activity of neurons has remained a challenge since the integration of nonlinear nodes is power‐hungry and, thus, hard to scale. Neuromorphic wave computing offers a new paradigm for energy‐efficient information processing, building upon transient and passively nonlinear interactions between optical modes in a waveguide. Here, an implementation of this concept is presented using broadband frequency conversion by coherent higher‐order soliton fission in a single‐mode fiber. It is shown that phase encoding on femtosecond pulses at the input, alongside frequency selection and weighting at the system output, makes transient spectro‐temporal system states interpretable and allows for the energy‐efficient emulation of various digital neural networks. The experiments in a compact, fully fiber‐integrated setup substantiate an anticipated enhancement in computational performance with increasing system nonlinearity. The findings suggest that broadband frequency generation, accessible on‐chip and in‐fiber with off‐the‐shelf components, may challenge the traditional approach to node‐based brain‐inspired hardware design, ultimately leading to energy‐efficient, scalable, and dependable computing with minimal optical hardware requirements.https://doi.org/10.1002/advs.202303835artificial neural networkshigher‐order soliton fissionsneuromorphic computingnonlinear fiber opticsoptics and photonics
spellingShingle Bennet Fischer
Mario Chemnitz
Yi Zhu
Nicolas Perron
Piotr Roztocki
Benjamin MacLellan
Luigi Di Lauro
A. Aadhi
Cristina Rimoldi
Tiago H. Falk
Roberto Morandotti
Neuromorphic Computing via Fission‐based Broadband Frequency Generation
Advanced Science
artificial neural networks
higher‐order soliton fissions
neuromorphic computing
nonlinear fiber optics
optics and photonics
title Neuromorphic Computing via Fission‐based Broadband Frequency Generation
title_full Neuromorphic Computing via Fission‐based Broadband Frequency Generation
title_fullStr Neuromorphic Computing via Fission‐based Broadband Frequency Generation
title_full_unstemmed Neuromorphic Computing via Fission‐based Broadband Frequency Generation
title_short Neuromorphic Computing via Fission‐based Broadband Frequency Generation
title_sort neuromorphic computing via fission based broadband frequency generation
topic artificial neural networks
higher‐order soliton fissions
neuromorphic computing
nonlinear fiber optics
optics and photonics
url https://doi.org/10.1002/advs.202303835
work_keys_str_mv AT bennetfischer neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT mariochemnitz neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT yizhu neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT nicolasperron neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT piotrroztocki neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT benjaminmaclellan neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT luigidilauro neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT aaadhi neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT cristinarimoldi neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT tiagohfalk neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration
AT robertomorandotti neuromorphiccomputingviafissionbasedbroadbandfrequencygeneration