An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)
<p><span id="page336"/>Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort, and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects, and...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-01-01
|
Series: | Geoscientific Model Development |
Online Access: | https://www.geosci-model-dev.net/13/335/2020/gmd-13-335-2020.pdf |
_version_ | 1818361049618841600 |
---|---|
author | N. Meili N. Meili G. Manoli G. Manoli P. Burlando E. Bou-Zeid W. T. L. Chow A. M. Coutts A. M. Coutts E. Daly K. A. Nice K. A. Nice K. A. Nice M. Roth N. J. Tapper N. J. Tapper E. Velasco E. R. Vivoni E. R. Vivoni S. Fatichi |
author_facet | N. Meili N. Meili G. Manoli G. Manoli P. Burlando E. Bou-Zeid W. T. L. Chow A. M. Coutts A. M. Coutts E. Daly K. A. Nice K. A. Nice K. A. Nice M. Roth N. J. Tapper N. J. Tapper E. Velasco E. R. Vivoni E. R. Vivoni S. Fatichi |
author_sort | N. Meili |
collection | DOAJ |
description | <p><span id="page336"/>Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort, and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects, and many recent developments of urban climate models focus on the inclusion of green and blue infrastructure to inform urban planning. However, many models still lack the ability to account for different plant types and oversimplify the interactions between the built environment, vegetation, and hydrology.
In this study, we present an urban ecohydrological model, Urban Tethys-Chloris (UT&C), that combines principles of ecosystem modelling with an urban canopy scheme accounting for the biophysical and ecophysiological characteristics of roof vegetation, ground vegetation, and urban trees. UT&C is a fully coupled energy and water balance model that calculates 2 m air temperature, 2 m humidity, and surface temperatures based on the infinite urban canyon approach. It further calculates the urban hydrological fluxes in the absence of snow, including transpiration as a function of plant photosynthesis. Hence, UT&C accounts for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance.
UT&C performs well when compared against energy flux measurements of eddy-covariance towers located in three cities in different climates (Singapore, Melbourne, and Phoenix).
A sensitivity analysis, performed as a proof of concept for the city of Singapore, shows a mean decrease in 2 m air temperature of 1.1 <span class="inline-formula"><sup>∘</sup></span>C for fully grass-covered ground, 0.2 <span class="inline-formula"><sup>∘</sup></span>C for high values of leaf area index (LAI), and 0.3 <span class="inline-formula"><sup>∘</sup></span>C for high values of <span class="inline-formula"><i>V</i><sub>c,max</sub></span> (an expression of photosynthetic capacity). These reductions in temperature were combined with a simultaneous increase in relative humidity by 6.5 <span class="inline-formula">%</span>, 2.1 <span class="inline-formula">%</span>, and 1.6 <span class="inline-formula">%</span>, for fully grass-covered ground, high values of LAI, and high values of <span class="inline-formula"><i>V</i><sub>c,max</sub></span>, respectively. Furthermore, the increase of pervious vegetated ground is able to significantly reduce surface runoff.</p> |
first_indexed | 2024-12-13T21:10:30Z |
format | Article |
id | doaj.art-20b9b9328935419eb2ec825b0a5149bb |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-12-13T21:10:30Z |
publishDate | 2020-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-20b9b9328935419eb2ec825b0a5149bb2022-12-21T23:31:21ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-01-011333536210.5194/gmd-13-335-2020An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)N. Meili0N. Meili1G. Manoli2G. Manoli3P. Burlando4E. Bou-Zeid5W. T. L. Chow6A. M. Coutts7A. M. Coutts8E. Daly9K. A. Nice10K. A. Nice11K. A. Nice12M. Roth13N. J. Tapper14N. J. Tapper15E. Velasco16E. R. Vivoni17E. R. Vivoni18S. Fatichi19ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, SingaporeInstitute of Environmental Engineering, ETH Zurich, Zurich, SwitzerlandInstitute of Environmental Engineering, ETH Zurich, Zurich, SwitzerlandDepartment of Civil, Environmental and Geomatic Engineering, University College London, London, UKInstitute of Environmental Engineering, ETH Zurich, Zurich, SwitzerlandDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USASchool of Social Sciences, Singapore Management University, SingaporeSchool of Earth, Atmosphere and Environment, Monash University, Clayton, AustraliaCooperative Research Centre for Water Sensitive Cities, Melbourne, AustraliaDepartment of Civil Engineering, Monash University, Clayton, AustraliaSchool of Earth, Atmosphere and Environment, Monash University, Clayton, AustraliaCooperative Research Centre for Water Sensitive Cities, Melbourne, AustraliaTransport, Health, and Urban Design Hub, Faculty of Architecture, Building, and Planning, University of Melbourne, Victoria, Melbourne, AustraliaDepartment of Geography, National University of Singapore, SingaporeSchool of Earth, Atmosphere and Environment, Monash University, Clayton, AustraliaCooperative Research Centre for Water Sensitive Cities, Melbourne, AustraliaCentre for Urban Greenery and Ecology, National Parks Board, SingaporeSchool of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USASchool of Earth and Space Exploration, Arizona State University, Tempe, AZ, USAInstitute of Environmental Engineering, ETH Zurich, Zurich, Switzerland<p><span id="page336"/>Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort, and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects, and many recent developments of urban climate models focus on the inclusion of green and blue infrastructure to inform urban planning. However, many models still lack the ability to account for different plant types and oversimplify the interactions between the built environment, vegetation, and hydrology. In this study, we present an urban ecohydrological model, Urban Tethys-Chloris (UT&C), that combines principles of ecosystem modelling with an urban canopy scheme accounting for the biophysical and ecophysiological characteristics of roof vegetation, ground vegetation, and urban trees. UT&C is a fully coupled energy and water balance model that calculates 2 m air temperature, 2 m humidity, and surface temperatures based on the infinite urban canyon approach. It further calculates the urban hydrological fluxes in the absence of snow, including transpiration as a function of plant photosynthesis. Hence, UT&C accounts for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements of eddy-covariance towers located in three cities in different climates (Singapore, Melbourne, and Phoenix). A sensitivity analysis, performed as a proof of concept for the city of Singapore, shows a mean decrease in 2 m air temperature of 1.1 <span class="inline-formula"><sup>∘</sup></span>C for fully grass-covered ground, 0.2 <span class="inline-formula"><sup>∘</sup></span>C for high values of leaf area index (LAI), and 0.3 <span class="inline-formula"><sup>∘</sup></span>C for high values of <span class="inline-formula"><i>V</i><sub>c,max</sub></span> (an expression of photosynthetic capacity). These reductions in temperature were combined with a simultaneous increase in relative humidity by 6.5 <span class="inline-formula">%</span>, 2.1 <span class="inline-formula">%</span>, and 1.6 <span class="inline-formula">%</span>, for fully grass-covered ground, high values of LAI, and high values of <span class="inline-formula"><i>V</i><sub>c,max</sub></span>, respectively. Furthermore, the increase of pervious vegetated ground is able to significantly reduce surface runoff.</p>https://www.geosci-model-dev.net/13/335/2020/gmd-13-335-2020.pdf |
spellingShingle | N. Meili N. Meili G. Manoli G. Manoli P. Burlando E. Bou-Zeid W. T. L. Chow A. M. Coutts A. M. Coutts E. Daly K. A. Nice K. A. Nice K. A. Nice M. Roth N. J. Tapper N. J. Tapper E. Velasco E. R. Vivoni E. R. Vivoni S. Fatichi An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) Geoscientific Model Development |
title | An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) |
title_full | An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) |
title_fullStr | An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) |
title_full_unstemmed | An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) |
title_short | An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) |
title_sort | urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology ut amp c v1 0 |
url | https://www.geosci-model-dev.net/13/335/2020/gmd-13-335-2020.pdf |
work_keys_str_mv | AT nmeili anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT nmeili anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT gmanoli anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT gmanoli anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT pburlando anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ebouzeid anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT wtlchow anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT amcoutts anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT amcoutts anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT edaly anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT mroth anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT njtapper anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT njtapper anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT evelasco anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ervivoni anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ervivoni anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT sfatichi anurbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT nmeili urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT nmeili urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT gmanoli urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT gmanoli urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT pburlando urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ebouzeid urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT wtlchow urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT amcoutts urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT amcoutts urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT edaly urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT kanice urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT mroth urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT njtapper urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT njtapper urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT evelasco urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ervivoni urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT ervivoni urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 AT sfatichi urbanecohydrologicalmodeltoquantifytheeffectofvegetationonurbanclimateandhydrologyutampcv10 |