Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks
Abstract Background A major focus of research on the gut microbiota of poultry has been to define signatures of a healthy gut and identify microbiota components that correlate with feed conversion. However, there is a high variation in individual gut microbiota profiles and their association with pe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-10-01
|
Series: | Animal Microbiome |
Subjects: | |
Online Access: | https://doi.org/10.1186/s42523-021-00127-y |
_version_ | 1818676804691427328 |
---|---|
author | Yugal Raj Bindari Robert J. Moore Thi Thu Hao Van Stephen W. Walkden-Brown Priscilla F. Gerber |
author_facet | Yugal Raj Bindari Robert J. Moore Thi Thu Hao Van Stephen W. Walkden-Brown Priscilla F. Gerber |
author_sort | Yugal Raj Bindari |
collection | DOAJ |
description | Abstract Background A major focus of research on the gut microbiota of poultry has been to define signatures of a healthy gut and identify microbiota components that correlate with feed conversion. However, there is a high variation in individual gut microbiota profiles and their association with performance. Population level samples such as dust and pooled excreta could be useful to investigate bacterial signatures associated with productivity at the flock-level. This study was designed to investigate the bacterial signatures of high and low-performing commercial meat chicken farms in dust and pooled excreta samples. Poultry house dust and fresh pooled excreta were collected at days 7, 14, 21, 28 and 35 of age from 8 farms of two Australian integrator companies and 389 samples assessed by 16S ribosomal RNA gene amplicon sequencing. The farms were ranked as low (n = 4) or high performers (n = 4) based on feed conversion rate corrected by body weight. Results Permutational analysis of variance based on Bray–Curtis dissimilarities using abundance data for bacterial community structure results showed that company explained the highest variation in the bacterial community structure in excreta (R2 = 0.21, p = 0.001) while age explained the highest variation in the bacterial community structure in dust (R2 = 0.13, p = 0.001). Farm performance explained the least variation in the bacterial community structure in both dust (R2 = 0.03, p = 0.001) and excreta (R2 = 0.01, p = 0.001) samples. However, specific bacterial taxa were found to be associated with high and low performance in both dust and excreta. The bacteria taxa associated with high-performing farms in dust or excreta found in this study were Enterococcus and Candidatus Arthromitus whereas bacterial taxa associated with low-performing farms included Nocardia, Lapillococcus, Brachybacterium, Ruania, Dietzia, Brevibacterium, Jeotgalicoccus, Corynebacterium and Aerococcus. Conclusions Dust and excreta could be useful for investigating bacterial signatures associated with high and low performance in commercial poultry farms. Further studies on a larger number of farms are needed to determine if the bacterial signatures found in this study are reproducible. |
first_indexed | 2024-12-17T08:49:18Z |
format | Article |
id | doaj.art-20be103d95ea4ce598631f6ff78969d7 |
institution | Directory Open Access Journal |
issn | 2524-4671 |
language | English |
last_indexed | 2024-12-17T08:49:18Z |
publishDate | 2021-10-01 |
publisher | BMC |
record_format | Article |
series | Animal Microbiome |
spelling | doaj.art-20be103d95ea4ce598631f6ff78969d72022-12-21T21:56:07ZengBMCAnimal Microbiome2524-46712021-10-013111210.1186/s42523-021-00127-yMicrobial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocksYugal Raj Bindari0Robert J. Moore1Thi Thu Hao Van2Stephen W. Walkden-Brown3Priscilla F. Gerber4Animal Science, School of Environmental and Rural Science, University of New EnglandSchool of Science, RMIT UniversitySchool of Science, RMIT UniversityAnimal Science, School of Environmental and Rural Science, University of New EnglandAnimal Science, School of Environmental and Rural Science, University of New EnglandAbstract Background A major focus of research on the gut microbiota of poultry has been to define signatures of a healthy gut and identify microbiota components that correlate with feed conversion. However, there is a high variation in individual gut microbiota profiles and their association with performance. Population level samples such as dust and pooled excreta could be useful to investigate bacterial signatures associated with productivity at the flock-level. This study was designed to investigate the bacterial signatures of high and low-performing commercial meat chicken farms in dust and pooled excreta samples. Poultry house dust and fresh pooled excreta were collected at days 7, 14, 21, 28 and 35 of age from 8 farms of two Australian integrator companies and 389 samples assessed by 16S ribosomal RNA gene amplicon sequencing. The farms were ranked as low (n = 4) or high performers (n = 4) based on feed conversion rate corrected by body weight. Results Permutational analysis of variance based on Bray–Curtis dissimilarities using abundance data for bacterial community structure results showed that company explained the highest variation in the bacterial community structure in excreta (R2 = 0.21, p = 0.001) while age explained the highest variation in the bacterial community structure in dust (R2 = 0.13, p = 0.001). Farm performance explained the least variation in the bacterial community structure in both dust (R2 = 0.03, p = 0.001) and excreta (R2 = 0.01, p = 0.001) samples. However, specific bacterial taxa were found to be associated with high and low performance in both dust and excreta. The bacteria taxa associated with high-performing farms in dust or excreta found in this study were Enterococcus and Candidatus Arthromitus whereas bacterial taxa associated with low-performing farms included Nocardia, Lapillococcus, Brachybacterium, Ruania, Dietzia, Brevibacterium, Jeotgalicoccus, Corynebacterium and Aerococcus. Conclusions Dust and excreta could be useful for investigating bacterial signatures associated with high and low performance in commercial poultry farms. Further studies on a larger number of farms are needed to determine if the bacterial signatures found in this study are reproducible.https://doi.org/10.1186/s42523-021-00127-yChickenMicrobiotaPerformanceSignaturesDustExcreta |
spellingShingle | Yugal Raj Bindari Robert J. Moore Thi Thu Hao Van Stephen W. Walkden-Brown Priscilla F. Gerber Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks Animal Microbiome Chicken Microbiota Performance Signatures Dust Excreta |
title | Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
title_full | Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
title_fullStr | Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
title_full_unstemmed | Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
title_short | Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
title_sort | microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks |
topic | Chicken Microbiota Performance Signatures Dust Excreta |
url | https://doi.org/10.1186/s42523-021-00127-y |
work_keys_str_mv | AT yugalrajbindari microbialtaxaindustandexcretaassociatedwiththeproductiveperformanceofcommercialmeatchickenflocks AT robertjmoore microbialtaxaindustandexcretaassociatedwiththeproductiveperformanceofcommercialmeatchickenflocks AT thithuhaovan microbialtaxaindustandexcretaassociatedwiththeproductiveperformanceofcommercialmeatchickenflocks AT stephenwwalkdenbrown microbialtaxaindustandexcretaassociatedwiththeproductiveperformanceofcommercialmeatchickenflocks AT priscillafgerber microbialtaxaindustandexcretaassociatedwiththeproductiveperformanceofcommercialmeatchickenflocks |