Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil
The utilizing of traditional chemical stabilizers could improve soil engineering properties but also results in brittle behavior and causes environmental problems. This study investigates the feasibility of the combined utilization of an ecofriendly biopolymer and fiber inclusions as an alternative...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/14/4/787 |
_version_ | 1797476934715703296 |
---|---|
author | Chunhui Chen Kai Wei Jiayu Gu Xiaoyang Huang Xianyao Dai Qingbing Liu |
author_facet | Chunhui Chen Kai Wei Jiayu Gu Xiaoyang Huang Xianyao Dai Qingbing Liu |
author_sort | Chunhui Chen |
collection | DOAJ |
description | The utilizing of traditional chemical stabilizers could improve soil engineering properties but also results in brittle behavior and causes environmental problems. This study investigates the feasibility of the combined utilization of an ecofriendly biopolymer and fiber inclusions as an alternative to traditional cement for reinforcing soft soil. A series of unconfined compression tests were conducted to examine the combined effect of the biopolymer and fibers on the stress–strain characteristics, strength improvement, failure pattern, and reinforcement mechanism of soft soil. The results show that the biopolymer associated with fibers has an unconfined compressive strength similar to that of fiber-reinforced soil. However, it then increases with different curing times and conditions, which can be up to 1.5 MPa–2.5 MPa. The combined effect of fibers and the biopolymer is not simply equivalent to the sum of the effects of each individual material. The fiber shows its role instantly after being mixed into soil, whereas the effect of biopolymer gradually appears with sample curing time. The biopolymer plays a dominant role in increasing the peak unconfined compressive strength and brittleness of soil, while the amount of fiber is crucial for reducing soil brittleness and increasing ductility. It is shown that the biopolymer not only contributes to the particle bonding force but also facilitates the reinforcement efficiency of fibers in the soil. The fibers in return assist in reducing the soil brittleness arising from biopolymer cementation and provide residual resistance after post-peak failure. |
first_indexed | 2024-03-09T21:10:49Z |
format | Article |
id | doaj.art-20bf9da1d4e9402a9b7aedbe64c5f1a3 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-09T21:10:49Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-20bf9da1d4e9402a9b7aedbe64c5f1a32023-11-23T21:45:52ZengMDPI AGPolymers2073-43602022-02-0114478710.3390/polym14040787Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft SoilChunhui Chen0Kai Wei1Jiayu Gu2Xiaoyang Huang3Xianyao Dai4Qingbing Liu5Badong National Observation and Research Station of Geohazards (BNORSG), Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, ChinaBadong National Observation and Research Station of Geohazards (BNORSG), Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, ChinaBadong National Observation and Research Station of Geohazards (BNORSG), Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, ChinaDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, ChinaHubei Provincial Communications Planning and Design Institute, Wuhan 430051, ChinaBadong National Observation and Research Station of Geohazards (BNORSG), Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, ChinaThe utilizing of traditional chemical stabilizers could improve soil engineering properties but also results in brittle behavior and causes environmental problems. This study investigates the feasibility of the combined utilization of an ecofriendly biopolymer and fiber inclusions as an alternative to traditional cement for reinforcing soft soil. A series of unconfined compression tests were conducted to examine the combined effect of the biopolymer and fibers on the stress–strain characteristics, strength improvement, failure pattern, and reinforcement mechanism of soft soil. The results show that the biopolymer associated with fibers has an unconfined compressive strength similar to that of fiber-reinforced soil. However, it then increases with different curing times and conditions, which can be up to 1.5 MPa–2.5 MPa. The combined effect of fibers and the biopolymer is not simply equivalent to the sum of the effects of each individual material. The fiber shows its role instantly after being mixed into soil, whereas the effect of biopolymer gradually appears with sample curing time. The biopolymer plays a dominant role in increasing the peak unconfined compressive strength and brittleness of soil, while the amount of fiber is crucial for reducing soil brittleness and increasing ductility. It is shown that the biopolymer not only contributes to the particle bonding force but also facilitates the reinforcement efficiency of fibers in the soil. The fibers in return assist in reducing the soil brittleness arising from biopolymer cementation and provide residual resistance after post-peak failure.https://www.mdpi.com/2073-4360/14/4/787biopolymerfibersoilinteraction mechanismcombined effect |
spellingShingle | Chunhui Chen Kai Wei Jiayu Gu Xiaoyang Huang Xianyao Dai Qingbing Liu Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil Polymers biopolymer fiber soil interaction mechanism combined effect |
title | Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil |
title_full | Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil |
title_fullStr | Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil |
title_full_unstemmed | Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil |
title_short | Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil |
title_sort | combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil |
topic | biopolymer fiber soil interaction mechanism combined effect |
url | https://www.mdpi.com/2073-4360/14/4/787 |
work_keys_str_mv | AT chunhuichen combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil AT kaiwei combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil AT jiayugu combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil AT xiaoyanghuang combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil AT xianyaodai combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil AT qingbingliu combinedeffectofbiopolymerandfiberinclusionsonunconfinedcompressivestrengthofsoftsoil |