Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s eco...

Full description

Bibliographic Details
Main Authors: David Saravia, Wilian Salazar, Lamberto Valqui-Valqui, Javier Quille-Mamani, Rossana Porras-Jorge, Flor-Anita Corredor, Elgar Barboza, Héctor V. Vásquez, Andrés V. Casas Diaz, Carlos I. Arbizu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/12/11/2630
_version_ 1797469458861654016
author David Saravia
Wilian Salazar
Lamberto Valqui-Valqui
Javier Quille-Mamani
Rossana Porras-Jorge
Flor-Anita Corredor
Elgar Barboza
Héctor V. Vásquez
Andrés V. Casas Diaz
Carlos I. Arbizu
author_facet David Saravia
Wilian Salazar
Lamberto Valqui-Valqui
Javier Quille-Mamani
Rossana Porras-Jorge
Flor-Anita Corredor
Elgar Barboza
Héctor V. Vásquez
Andrés V. Casas Diaz
Carlos I. Arbizu
author_sort David Saravia
collection DOAJ
description Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.
first_indexed 2024-03-09T19:21:42Z
format Article
id doaj.art-20c00c9403794862be893a45f9590790
institution Directory Open Access Journal
issn 2073-4395
language English
last_indexed 2024-03-09T19:21:42Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Agronomy
spelling doaj.art-20c00c9403794862be893a45f95907902023-11-24T03:19:33ZengMDPI AGAgronomy2073-43952022-10-011211263010.3390/agronomy12112630Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of PeruDavid Saravia0Wilian Salazar1Lamberto Valqui-Valqui2Javier Quille-Mamani3Rossana Porras-Jorge4Flor-Anita Corredor5Elgar Barboza6Héctor V. Vásquez7Andrés V. Casas Diaz8Carlos I. Arbizu9Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruFacultad de Agronomía, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 15024, PeruDirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, PeruEarly assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.https://www.mdpi.com/2073-4395/12/11/2630vegetation indicesprecision farminghybridphenotypingremote sensing
spellingShingle David Saravia
Wilian Salazar
Lamberto Valqui-Valqui
Javier Quille-Mamani
Rossana Porras-Jorge
Flor-Anita Corredor
Elgar Barboza
Héctor V. Vásquez
Andrés V. Casas Diaz
Carlos I. Arbizu
Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
Agronomy
vegetation indices
precision farming
hybrid
phenotyping
remote sensing
title Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
title_full Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
title_fullStr Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
title_full_unstemmed Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
title_short Yield Predictions of Four Hybrids of Maize (<em>Zea mays</em>) Using Multispectral Images Obtained from UAV in the Coast of Peru
title_sort yield predictions of four hybrids of maize em zea mays em using multispectral images obtained from uav in the coast of peru
topic vegetation indices
precision farming
hybrid
phenotyping
remote sensing
url https://www.mdpi.com/2073-4395/12/11/2630
work_keys_str_mv AT davidsaravia yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT wiliansalazar yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT lambertovalquivalqui yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT javierquillemamani yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT rossanaporrasjorge yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT floranitacorredor yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT elgarbarboza yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT hectorvvasquez yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT andresvcasasdiaz yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu
AT carlosiarbizu yieldpredictionsoffourhybridsofmaizeemzeamaysemusingmultispectralimagesobtainedfromuavinthecoastofperu