Transient Stability Enhancement Using a Wide-Area Controlled SVC: An HIL Validation Approach

This paper presents a control scheme of a wide-area controlled static VAr compensator (WAC-SVC) and its real-time implementation in a hardware-in-the-loop (HIL) simulation scheme with three control objectives: (1) to increase the critical clearing time, (2) to damp the power oscillations, and (3) to...

Full description

Bibliographic Details
Main Authors: Aaron Esparza, Juan Segundo, Ciro Nuñez, Nancy Visairo, Emilio Barocio, Héctor García
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/7/1639
Description
Summary:This paper presents a control scheme of a wide-area controlled static VAr compensator (WAC-SVC) and its real-time implementation in a hardware-in-the-loop (HIL) simulation scheme with three control objectives: (1) to increase the critical clearing time, (2) to damp the power oscillations, and (3) to minimize the maximum line current. The proposed control scheme considers a correction strategy to compensate the delays up to 200 ms. In addition to this, a generator tripping scheme based on synchrophasor measurements to determine the proximity to the loss of synchronism is proposed. A delay compensation algorithm based on polynomial approximations is also developed. The proposed WAC-SVC is experimentally validated using a Real-Time Digital Simulator platform (RTDS), industrial communication protocols, a commercial device for PMU-based control implementations, and digital relays with PMU capability. The real-time simulation results confirm its effectiveness and feasibility in real industrial applications. Furthermore, practical guidelines to implement this kind of control schemes are provided.
ISSN:1996-1073