Deep Morphological Anomaly Detection Based on Angular Margin Loss

Deep anomaly detection aims to identify “abnormal” data by utilizing a deep neural network trained on a normal training dataset. In general, industrial visual anomaly detection systems distinguish between normal and “abnormal” data through small morphological differences such as cracks and stains. N...

Full description

Bibliographic Details
Main Authors: Taehyeon Kim, Eungi Hong, Yoonsik Choe
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/14/6545
Description
Summary:Deep anomaly detection aims to identify “abnormal” data by utilizing a deep neural network trained on a normal training dataset. In general, industrial visual anomaly detection systems distinguish between normal and “abnormal” data through small morphological differences such as cracks and stains. Nevertheless, most existing algorithms emphasize capturing the semantic features of normal data rather than the morphological features. Therefore, they yield poor performance on real-world visual inspection, although they show their superiority in simulations with representative image classification datasets. To address this limitation, we propose a novel deep anomaly detection algorithm based on the salient morphological features of normal data. The main idea behind the proposed algorithm is to train a multiclass model to classify hundreds of morphological transformation cases applied to all the given data. To this end, the proposed algorithm utilizes a self-supervised learning strategy, making unsupervised learning straightforward. Additionally, to enhance the performance of the proposed algorithm, we replaced the cross-entropy-based loss function with the angular margin loss function. It is experimentally demonstrated that the proposed algorithm outperforms several recent anomaly detection methodologies in various datasets.
ISSN:2076-3417