El análisis textural mediante las matrices de co-ocurrencia (GLCM) sobre imagen ecográfica del tendón rotuliano es de utilidad para la detección cambios histológicos tras un entrenamiento con plataforma de vibración
Introducción: Las matrices de co-ocurrencia del nivel de gris (GLCM) son útiles para el análisis textural de imágenes ya la discriminación de patrones pero hasta ahora no se han aplicado sobre imágenes ecográficas del tendón. Objetivo: Análisis textural ecográfico del tendón rotuliano. Método: Estud...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Católica San Antonio de Murcia
2009-01-01
|
Series: | Cultura, Ciencia y Deporte |
Online Access: | http://www.redalyc.org/articulo.oa?id=163013077004 |
Summary: | Introducción: Las matrices de co-ocurrencia del nivel de gris (GLCM) son útiles para el análisis textural de imágenes ya la discriminación de patrones pero hasta ahora no se han aplicado sobre imágenes ecográficas del tendón. Objetivo: Análisis textural ecográfico del tendón rotuliano. Método: Estudio longitudinal analítico con 16 sujetos (8 mujeres y 8 hombres) jóvenes, sanos y sedentarios entrenados con una plataforma de vibración vertical (Fitvibe Medical) 2 días x 14 semanas. Se tomaron cortes ecográficos transversales del tendón rotuliano antes y después del entrenamiento con un ecógrafo Sonosite-180 (Lineal 5-10 MHz). Mediante el algoritmo GLCM de Image J v1.38 se calcularon las variables texturales Uniformidad (ASM), Contraste, Correlación, Homogeneidad (IDM) y la Entropía para cuatro orientaciones (0º, 90º, 180º y 270º) y tres distancias (d=1, 5 y 10 px). Se aplicó la prueba de Wilcoxon (i.c.95%) para muestras relacionadas (SPSS 15.0). Resultados: la Entropía (d=5) fue la más sensible a los cambios texturales; quizá la variable ASM, pueda resultar también de interés junto con el Contraste. Conclusiones: Ante la falta de referencias con el uso de la GLCM en el análisis textural de ecografía de tendón son necesarios más análisis que estudien cómo afectan los distintos parámetros a las variables texturales, cómo se relacionan entre sí y cuáles pueden ser los mejores ajustes del algoritmo para detectar cambios en el patrón textural. |
---|---|
ISSN: | 1696-5043 1989-7413 |