Semi-automatic mapping of anthropogenic impervious surfaces in an urban/suburban area using Landsat 8 satellite data

Impervious surfaces have a significant impact on urban runoff, groundwater, base flow, water quality, and climate. Increase in Anthropogenic Impervious Surfaces (AIS) for a region is a true representation of urban expansion. Monitoring of AIS in an urban region is helpful for better urban planning a...

Full description

Bibliographic Details
Main Authors: Atul Kant Piyoosh, Sanjay Kumar Ghosh
Format: Article
Language:English
Published: Taylor & Francis Group 2017-07-01
Series:GIScience & Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/15481603.2017.1282414
Description
Summary:Impervious surfaces have a significant impact on urban runoff, groundwater, base flow, water quality, and climate. Increase in Anthropogenic Impervious Surfaces (AIS) for a region is a true representation of urban expansion. Monitoring of AIS in an urban region is helpful for better urban planning and resource management. Cost effective and efficient maps of AIS can be obtained for larger areas using remote sensing techniques. In the present study, extraction of AIS has been carried out using Double window Flexible Pace Search (DFPS) from a new index named as Normalized Difference Impervious Surface Index (NDAISI). NDAISI is developed by enhancing Biophysical Composition Index (BCI) in two stages using a new Modified Normalized Difference Soil Index (MNDSI). MNDSI has been developed from Band 7 and Band 8 (PAN) of Landsat 8 data. In comparison to existing impervious surface extraction methods, the new NDAISI approach is able to improve Spectral Discrimination Index (SDI) for bare soil and AIS significantly. Overall accuracy of mapping of AIS, using NDAISI approach has been found to be increased by nearly 23% when compared with existing impervious surface extraction methods.
ISSN:1548-1603
1943-7226