Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Hlavní autoři: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
Edice: | International Journal of Interactive Multimedia and Artificial Intelligence |
Témata: | |
On-line přístup: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Podobné jednotky
-
Application of Label Correlation in Multi-Label Classification: A Survey
Autor: Shan Huang, a další
Vydáno: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
Autor: Tianna Zhao, a další
Vydáno: (2022-05-01) -
Soft-label recover based label-specific features learning
Autor: Jiansheng Jiang, a další
Vydáno: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
Autor: Xiangeng Wang, a další
Vydáno: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
Autor: Gensheng Pei, a další
Vydáno: (2019-01-01)