Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Auteurs principaux: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
Collection: | International Journal of Interactive Multimedia and Artificial Intelligence |
Sujets: | |
Accès en ligne: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Documents similaires
-
Application of Label Correlation in Multi-Label Classification: A Survey
par: Shan Huang, et autres
Publié: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
par: Tianna Zhao, et autres
Publié: (2022-05-01) -
Soft-label recover based label-specific features learning
par: Jiansheng Jiang, et autres
Publié: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
par: Xiangeng Wang, et autres
Publié: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
par: Gensheng Pei, et autres
Publié: (2019-01-01)