Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
主要な著者: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
シリーズ: | International Journal of Interactive Multimedia and Artificial Intelligence |
主題: | |
オンライン・アクセス: | https://www.ijimai.org/journal/bibcite/reference/3159 |
類似資料
-
Application of Label Correlation in Multi-Label Classification: A Survey
著者:: Shan Huang, 等
出版事項: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
著者:: Tianna Zhao, 等
出版事項: (2022-05-01) -
Soft-label recover based label-specific features learning
著者:: Jiansheng Jiang, 等
出版事項: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
著者:: Xiangeng Wang, 等
出版事項: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
著者:: Gensheng Pei, 等
出版事項: (2019-01-01)