Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Principais autores: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
coleção: | International Journal of Interactive Multimedia and Artificial Intelligence |
Assuntos: | |
Acesso em linha: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Registros relacionados
-
Application of Label Correlation in Multi-Label Classification: A Survey
por: Shan Huang, et al.
Publicado em: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
por: Tianna Zhao, et al.
Publicado em: (2022-05-01) -
Soft-label recover based label-specific features learning
por: Jiansheng Jiang, et al.
Publicado em: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
por: Xiangeng Wang, et al.
Publicado em: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
por: Gensheng Pei, et al.
Publicado em: (2019-01-01)