Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Asıl Yazarlar: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
Seri Bilgileri: | International Journal of Interactive Multimedia and Artificial Intelligence |
Konular: | |
Online Erişim: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Benzer Materyaller
-
Application of Label Correlation in Multi-Label Classification: A Survey
Yazar:: Shan Huang, ve diğerleri
Baskı/Yayın Bilgisi: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
Yazar:: Tianna Zhao, ve diğerleri
Baskı/Yayın Bilgisi: (2022-05-01) -
Soft-label recover based label-specific features learning
Yazar:: Jiansheng Jiang, ve diğerleri
Baskı/Yayın Bilgisi: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
Yazar:: Xiangeng Wang, ve diğerleri
Baskı/Yayın Bilgisi: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
Yazar:: Gensheng Pei, ve diğerleri
Baskı/Yayın Bilgisi: (2019-01-01)