mTORC2 orchestrates monocytic and granulocytic lineage commitment by an ATF5-mediated pathway

Summary: Myeloid hematopoiesis is a finely controlled consecutive developmental process, which is essential to maintain peripheral innate immune homeostasis. Herein, we found that Rictor deletion caused the remarkable reduction of granulocyte-monocyte progenitors (GMPs), monocytes, and macrophages,...

Full description

Bibliographic Details
Main Authors: Yang Zhao, Chenxu Zhao, Han Guo, Zhaoqi Zhang, Huawen Xu, Mingpu Shi, Yanan Xu, Dong Wei, Yong Zhao
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223016176
Description
Summary:Summary: Myeloid hematopoiesis is a finely controlled consecutive developmental process, which is essential to maintain peripheral innate immune homeostasis. Herein, we found that Rictor deletion caused the remarkable reduction of granulocyte-monocyte progenitors (GMPs), monocytes, and macrophages, while the levels of neutrophils were unaffected. Adoptive transfer of Rictor-deleted GMPs or common myeloid progenitors (CMPs) in syngeneic mice showed poor re-constitution of monocytes compared to wild-type GMPs or CMPs. In addition to decreasing the proliferation of CMPs/GMPs, Rictor deletion preferentially inhibited Ly6C+ monocyte differentiation, while enhancing neutrophil differentiation, as determined by colony formation assays. mTORC2 promotes monocyte development by downregulation of the AKT-Foxo4-activating transcription factor 5 (ATF5)-mitochondrial unfolded protein response (mtUPR) pathway. Genetic overexpression of ATF5 or exposure to ethidium bromide significantly rescued monocyte/macrophage differentiation defects of Rictor-deficient myeloid progenitors. Therefore, Rictor is required for CMP/GMP proliferation and acts as an important switch to balance monocytic and granulocytic lineage commitment in bone marrow.
ISSN:2589-0042