Common DC-Link Multilevel Converters: Topologies, Control and Industrial Applications

Multilevel converters (MLCs) are widely recognized for their exceptional benefits and have emerged as the preferred choice for medium- and high-power/voltage applications. Their usage has also been extended to low-power applications to overcome issues associated with high switching frequencies and e...

Full description

Bibliographic Details
Main Authors: Ibrahim Harbi, Jose Rodriguez, Amirreza Poorfakhraei, Hani Vahedi, Miguel Guse, Mohamed Trabelsi, Mohamed Abdelrahem, Mostafa Ahmed, Mohammad Fahad, Chang-Hua Lin, Thiwanka Wijekoon, Wei Tian, Marcelo Lobo Heldwein, Ralph Kennel
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Open Journal of Power Electronics
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10171447/
Description
Summary:Multilevel converters (MLCs) are widely recognized for their exceptional benefits and have emerged as the preferred choice for medium- and high-power/voltage applications. Their usage has also been extended to low-power applications to overcome issues associated with high switching frequencies and electromagnetic interference (EMI) commonly encountered in two-level converters. Common dc-link MLCs have received particular attention in industry due to their ability to eliminate the need for bulky and inefficient transformers and rectifiers, making them a compelling option for different applications, primarily medium- and high-power/voltage applications such as wind turbine (WT) power conversion systems. Furthermore, common dc-link topologies are required for back-to-back (BTB) configurations, as they facilitate the use of a shared dc-link between the rectification and inversion stages. Despite their popularity, there is currently no comprehensive review article dedicated to common dc-link topologies. This article addresses this gap by presenting a comprehensive review of common dc-link MLCs, covering their topological evolution, features, topologies comparison, modulation techniques, control strategies, and industrial application areas. Additionally, future perspectives and recommendations are discussed to provide researchers and engineers with a better understanding of the potential applications and advantages of these converters.
ISSN:2644-1314