HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alterna...

Full description

Bibliographic Details
Main Authors: Ahuvi Yearim, Sahar Gelfman, Ronna Shayevitch, Shai Melcer, Ohad Glaich, Jan-Philipp Mallm, Malka Nissim-Rafinia, Ayelet-Hashahar S. Cohen, Karsten Rippe, Eran Meshorer, Gil Ast
Format: Article
Language:English
Published: Elsevier 2015-02-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124715000637
Description
Summary:The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation’s significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.
ISSN:2211-1247