Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil
This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Baghdad
2020-07-01
|
Series: | Journal of Engineering |
Subjects: | |
Online Access: | http://joe.uobaghdad.edu.iq/index.php/main/article/view/904 |
_version_ | 1797720467726925824 |
---|---|
author | Saleem Mohammad Alrubaye |
author_facet | Saleem Mohammad Alrubaye |
author_sort | Saleem Mohammad Alrubaye |
collection | DOAJ |
description | This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas oil which was obtained, reaches to (50, 70, 75 and 80) % for (2, 2.5, 3 and 3.5 catalysts -to- oil ratio parameter respectively. The second step for this study was distillation of this cracking heavy vacuum gas oil liquid by atmospheric distillation device for these several catalyst -to- oil ratio parameter, according to obtained light fuel cuts (gasoline, kerosene and gas oil). The percentage volume of light fractions at various COR are (7, 25 and 18) for COR 2, (10, 20 and 40) for COR 2.5, (10, 30 and 35) for COR 3 and (15, 30 and 35) for COR 3.5 which separates according to its boiling point. The light cuts were distilled by atmospheric distillation device in order to obtained distillation curve. The third step was study the major physical and chemical properties for feed (heavy vacuum gas oil) and catalytic cracking liquid of HVGO at various COR with its light fuel fractions, the results refers to acceptable properties compared with other commercial properties. |
first_indexed | 2024-03-12T09:19:54Z |
format | Article |
id | doaj.art-210bb0b6cf434f638d81328d9dd7e1ab |
institution | Directory Open Access Journal |
issn | 1726-4073 2520-3339 |
language | English |
last_indexed | 2024-03-12T09:19:54Z |
publishDate | 2020-07-01 |
publisher | University of Baghdad |
record_format | Article |
series | Journal of Engineering |
spelling | doaj.art-210bb0b6cf434f638d81328d9dd7e1ab2023-09-02T14:33:59ZengUniversity of BaghdadJournal of Engineering1726-40732520-33392020-07-0126710.31026/j.eng.2020.07.02Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas OilSaleem Mohammad Alrubaye0College of Engineering, Al-Nahrain University, Baghdad, IraqThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas oil which was obtained, reaches to (50, 70, 75 and 80) % for (2, 2.5, 3 and 3.5 catalysts -to- oil ratio parameter respectively. The second step for this study was distillation of this cracking heavy vacuum gas oil liquid by atmospheric distillation device for these several catalyst -to- oil ratio parameter, according to obtained light fuel cuts (gasoline, kerosene and gas oil). The percentage volume of light fractions at various COR are (7, 25 and 18) for COR 2, (10, 20 and 40) for COR 2.5, (10, 30 and 35) for COR 3 and (15, 30 and 35) for COR 3.5 which separates according to its boiling point. The light cuts were distilled by atmospheric distillation device in order to obtained distillation curve. The third step was study the major physical and chemical properties for feed (heavy vacuum gas oil) and catalytic cracking liquid of HVGO at various COR with its light fuel fractions, the results refers to acceptable properties compared with other commercial properties.http://joe.uobaghdad.edu.iq/index.php/main/article/view/904Catalytic Cracking Reaction, Heavy vacuum gas oil, Catalyst to oil ratio parameter |
spellingShingle | Saleem Mohammad Alrubaye Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil Journal of Engineering Catalytic Cracking Reaction, Heavy vacuum gas oil, Catalyst to oil ratio parameter |
title | Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil |
title_full | Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil |
title_fullStr | Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil |
title_full_unstemmed | Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil |
title_short | Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil |
title_sort | study the effect of catalyst to oil ratio parameter cor on catalytic cracking of heavy vacuum gas oil |
topic | Catalytic Cracking Reaction, Heavy vacuum gas oil, Catalyst to oil ratio parameter |
url | http://joe.uobaghdad.edu.iq/index.php/main/article/view/904 |
work_keys_str_mv | AT saleemmohammadalrubaye studytheeffectofcatalysttooilratioparametercoroncatalyticcrackingofheavyvacuumgasoil |