Summary: | Evidence on the cost-effectiveness of newborn screening (NBS) for severe combined immunodeficiency (SCID) in the Australian policy context is lacking. In this study, a pilot population-based screening program in Australia was used to model the cost-effectiveness of NBS for SCID from the government perspective. Markov cohort simulations were nested within a decision analytic model to compare the costs and quality-adjusted life-years (QALYs) over a time horizon of 5 and 60 years for two strategies: (1) NBS for SCID and treat with early hematopoietic stem cell transplantation (HSCT); (2) no NBS for SCID and treat with late HSCT. Incremental costs were compared to incremental QALYs to calculate the incremental cost-effectiveness ratios (ICER). Sensitivity analyses were performed to assess the model uncertainty and identify key parameters impacting on the ICER. In the long-term over 60 years, universal NBS for SCID would gain 10 QALYs at a cost of US $0.3 million, resulting in an ICER of US$33,600/QALY. Probabilistic sensitivity analysis showed that more than half of the simulated ICERs were considered cost-effective against the common willingness-to-pay threshold of A$50,000/QALY (US$35,000/QALY). In the Australian context, screening for SCID should be introduced into the current NBS program from both clinical and economic perspectives.
|