Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh

Groundwater arsenic (As) still poses a massive public health threat, especially in South Asia, including Bangladesh. The arsenic removal efficiency of various technologies may be strongly dependent on groundwater composition. Previously, others have reported that the molar ratio <inline-formula&g...

Full description

Bibliographic Details
Main Authors: Ruohan Wu, Laura A. Richards, Ajmal Roshan, David A. Polya
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/20/3539
_version_ 1797572008706310144
author Ruohan Wu
Laura A. Richards
Ajmal Roshan
David A. Polya
author_facet Ruohan Wu
Laura A. Richards
Ajmal Roshan
David A. Polya
author_sort Ruohan Wu
collection DOAJ
description Groundwater arsenic (As) still poses a massive public health threat, especially in South Asia, including Bangladesh. The arsenic removal efficiency of various technologies may be strongly dependent on groundwater composition. Previously, others have reported that the molar ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula>, in particular, can usefully predict the potential efficiency of groundwater As removal by widespread sorption/co-precipitation-based remediation systems. Here, we innovatively extended the application of artificial intelligence (AI) machine learning models to predict the geospatial distribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula> in Bangladesh groundwaters utilizing our analogous AI predictions for groundwater As, Fe, and P. A comparison between the predicted geospatial distribution of groundwater As and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula> distinguished high groundwater As areas where (a) sorption/co-precipitation remediation technologies would have the potential to be highly effective in removing As without Fe amendment, as well as from those areas where (b) amendment with Fe (e.g., zero-valent Fe) would be required to promote efficient As removal. The 1 km<sup>2</sup> scale of the prediction maps provided a 100-fold improvement in the granularity of previous district-scale non-AI models. AI approaches have the potential to contribute to informing the appropriate selection and amendment of appropriate groundwater contamination remediation strategies where their effectiveness depends on local groundwater chemistry.
first_indexed 2024-03-10T20:48:34Z
format Article
id doaj.art-21277601d4744eccb01a4d20977a08ca
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T20:48:34Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-21277601d4744eccb01a4d20977a08ca2023-11-19T18:29:05ZengMDPI AGWater2073-44412023-10-011520353910.3390/w15203539Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in BangladeshRuohan Wu0Laura A. Richards1Ajmal Roshan2David A. Polya3Department of Earth and Environmental Sciences, School of Natural Sciences and Williamson Research Centre for Molecular Environmental Sciences, The University of Manchester, Manchester M13 9PL, UKDepartment of Earth and Environmental Sciences, School of Natural Sciences and Williamson Research Centre for Molecular Environmental Sciences, The University of Manchester, Manchester M13 9PL, UKDepartment of Earth and Environmental Sciences, School of Natural Sciences and Williamson Research Centre for Molecular Environmental Sciences, The University of Manchester, Manchester M13 9PL, UKDepartment of Earth and Environmental Sciences, School of Natural Sciences and Williamson Research Centre for Molecular Environmental Sciences, The University of Manchester, Manchester M13 9PL, UKGroundwater arsenic (As) still poses a massive public health threat, especially in South Asia, including Bangladesh. The arsenic removal efficiency of various technologies may be strongly dependent on groundwater composition. Previously, others have reported that the molar ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula>, in particular, can usefully predict the potential efficiency of groundwater As removal by widespread sorption/co-precipitation-based remediation systems. Here, we innovatively extended the application of artificial intelligence (AI) machine learning models to predict the geospatial distribution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula> in Bangladesh groundwaters utilizing our analogous AI predictions for groundwater As, Fe, and P. A comparison between the predicted geospatial distribution of groundwater As and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mrow><mo>[</mo><mrow><mi>Fe</mi></mrow><mo>]</mo></mrow><mo>−</mo><mn>1.8</mn><mrow><mo>[</mo><mi mathvariant="normal">P</mi><mo>]</mo></mrow></mrow><mrow><mrow><mo>[</mo><mrow><mi>As</mi></mrow><mo>]</mo></mrow></mrow></mfrac></mrow></semantics></math></inline-formula> distinguished high groundwater As areas where (a) sorption/co-precipitation remediation technologies would have the potential to be highly effective in removing As without Fe amendment, as well as from those areas where (b) amendment with Fe (e.g., zero-valent Fe) would be required to promote efficient As removal. The 1 km<sup>2</sup> scale of the prediction maps provided a 100-fold improvement in the granularity of previous district-scale non-AI models. AI approaches have the potential to contribute to informing the appropriate selection and amendment of appropriate groundwater contamination remediation strategies where their effectiveness depends on local groundwater chemistry.https://www.mdpi.com/2073-4441/15/20/3539groundwaterarsenicremediationmachine learning
spellingShingle Ruohan Wu
Laura A. Richards
Ajmal Roshan
David A. Polya
Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
Water
groundwater
arsenic
remediation
machine learning
title Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
title_full Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
title_fullStr Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
title_full_unstemmed Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
title_short Artificial Intelligence Modelling to Support the Groundwater Chemistry-Dependent Selection of Groundwater Arsenic Remediation Approaches in Bangladesh
title_sort artificial intelligence modelling to support the groundwater chemistry dependent selection of groundwater arsenic remediation approaches in bangladesh
topic groundwater
arsenic
remediation
machine learning
url https://www.mdpi.com/2073-4441/15/20/3539
work_keys_str_mv AT ruohanwu artificialintelligencemodellingtosupportthegroundwaterchemistrydependentselectionofgroundwaterarsenicremediationapproachesinbangladesh
AT lauraarichards artificialintelligencemodellingtosupportthegroundwaterchemistrydependentselectionofgroundwaterarsenicremediationapproachesinbangladesh
AT ajmalroshan artificialintelligencemodellingtosupportthegroundwaterchemistrydependentselectionofgroundwaterarsenicremediationapproachesinbangladesh
AT davidapolya artificialintelligencemodellingtosupportthegroundwaterchemistrydependentselectionofgroundwaterarsenicremediationapproachesinbangladesh