A Subtle Aspect of Minimal Lengths in the Generalized Uncertainty Principle

In this work, we point out an overlooked and subtle feature of the generalized uncertainty principle (GUP) approach to quantizing gravity: namely that different pairs of modified operators with the same modified commutator, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathM...

Full description

Bibliographic Details
Main Authors: Michael Bishop, Joey Contreras, Douglas Singleton
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/8/3/192
Description
Summary:In this work, we point out an overlooked and subtle feature of the generalized uncertainty principle (GUP) approach to quantizing gravity: namely that different pairs of modified operators with the same modified commutator, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">[</mo><mover accent="true"><mi>X</mi><mo stretchy="false">^</mo></mover><mo>,</mo><mover accent="true"><mi>P</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">]</mo></mrow><mo>=</mo><mi>i</mi><mi>ħ</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>β</mi><msup><mi>p</mi><mn>2</mn></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, may have different physical consequences such as having no minimal length at all. These differences depend on how the position and/or momentum operators are modified rather than only on the resulting modified commutator. This provides guidance when constructing GUP models since it distinguishes those GUPs that have a minimal length scale, as suggested by some broad arguments about quantum gravity, versus GUPs without a minimal length scale.
ISSN:2218-1997