On the convergence of multidimensional S-fractions with independent variables

The paper investigates the convergence problem of a special class of branched continued fractions, i.e. the multidimensional S-fractions with independent variables, consisting of \[\sum_{i_1=1}^N\frac{c_{i(1)}z_{i_1}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{c_{i(2)}z_{i_2}}{1}{\atop+} \sum_{i_3=1}^{i_2}\f...

Full description

Bibliographic Details
Main Authors: O.S. Bodnar, R.I. Dmytryshyn, S.V. Sharyn
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2020-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4320
_version_ 1827281260440977408
author O.S. Bodnar
R.I. Dmytryshyn
S.V. Sharyn
author_facet O.S. Bodnar
R.I. Dmytryshyn
S.V. Sharyn
author_sort O.S. Bodnar
collection DOAJ
description The paper investigates the convergence problem of a special class of branched continued fractions, i.e. the multidimensional S-fractions with independent variables, consisting of \[\sum_{i_1=1}^N\frac{c_{i(1)}z_{i_1}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{c_{i(2)}z_{i_2}}{1}{\atop+} \sum_{i_3=1}^{i_2}\frac{c_{i(3)}z_{i_3}}{1}{\atop+}\cdots,\] which are multidimensional generalizations of S-fractions (Stieltjes fractions). These branched continued fractions are used, in particular, for approximation of the analytic functions of several variables given by multiple power series. For multidimensional S-fractions with independent variables we have established a convergence criterion in the domain \[H=\left\{{\bf{z}}=(z_1,z_2,\ldots,z_N)\in\mathbb{C}^N:\;|\arg(z_k+1)|<\pi,\; 1\le k\le N\right\}\] as well as the estimates of the rate of convergence in the open polydisc \[Q=\left\{{\bf{z}}=(z_1,z_2,\ldots,z_N)\in\mathbb{C}^N:\;|z_k|<1,\;1\le k\le N\right\}\] and in a closure of the domain $Q.$
first_indexed 2024-04-24T08:57:15Z
format Article
id doaj.art-2150c25458ef4d0da23dd020c80b756a
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:57:15Z
publishDate 2020-12-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-2150c25458ef4d0da23dd020c80b756a2024-04-16T07:04:01ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102020-12-0112235335910.15330/cmp.12.2.353-3593783On the convergence of multidimensional S-fractions with independent variablesO.S. Bodnar0R.I. Dmytryshyn1https://orcid.org/0000-0003-2845-0137S.V. Sharyn2https://orcid.org/0000-0003-2547-1442Volodymyr Gnatiuk Ternopil National Pedagogical University, 2 Kryvonosa str., 46027, Ternopil, UkraineVasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineVasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineThe paper investigates the convergence problem of a special class of branched continued fractions, i.e. the multidimensional S-fractions with independent variables, consisting of \[\sum_{i_1=1}^N\frac{c_{i(1)}z_{i_1}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{c_{i(2)}z_{i_2}}{1}{\atop+} \sum_{i_3=1}^{i_2}\frac{c_{i(3)}z_{i_3}}{1}{\atop+}\cdots,\] which are multidimensional generalizations of S-fractions (Stieltjes fractions). These branched continued fractions are used, in particular, for approximation of the analytic functions of several variables given by multiple power series. For multidimensional S-fractions with independent variables we have established a convergence criterion in the domain \[H=\left\{{\bf{z}}=(z_1,z_2,\ldots,z_N)\in\mathbb{C}^N:\;|\arg(z_k+1)|<\pi,\; 1\le k\le N\right\}\] as well as the estimates of the rate of convergence in the open polydisc \[Q=\left\{{\bf{z}}=(z_1,z_2,\ldots,z_N)\in\mathbb{C}^N:\;|z_k|<1,\;1\le k\le N\right\}\] and in a closure of the domain $Q.$https://journals.pnu.edu.ua/index.php/cmp/article/view/4320branched continued fractionconvergence criterionuniform convergenceestimates of the rate of convergencecontinued fraction
spellingShingle O.S. Bodnar
R.I. Dmytryshyn
S.V. Sharyn
On the convergence of multidimensional S-fractions with independent variables
Karpatsʹkì Matematičnì Publìkacìï
branched continued fraction
convergence criterion
uniform convergence
estimates of the rate of convergence
continued fraction
title On the convergence of multidimensional S-fractions with independent variables
title_full On the convergence of multidimensional S-fractions with independent variables
title_fullStr On the convergence of multidimensional S-fractions with independent variables
title_full_unstemmed On the convergence of multidimensional S-fractions with independent variables
title_short On the convergence of multidimensional S-fractions with independent variables
title_sort on the convergence of multidimensional s fractions with independent variables
topic branched continued fraction
convergence criterion
uniform convergence
estimates of the rate of convergence
continued fraction
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4320
work_keys_str_mv AT osbodnar ontheconvergenceofmultidimensionalsfractionswithindependentvariables
AT ridmytryshyn ontheconvergenceofmultidimensionalsfractionswithindependentvariables
AT svsharyn ontheconvergenceofmultidimensionalsfractionswithindependentvariables