Nonlinear analysis of the electroencephalogram in depth of anesthesia

Digital signal processing of the electroencephalogram (EEG) became important in monitoring depth of anesthesia (DoA) being used to provide a better anesthetic technique. The objective of this work was to conduct a review about nonlinear mathematical methods applied recently to the analyses of nonli...

Full description

Bibliographic Details
Main Authors: Oscar Leonardo Mosquera-Dusan, Daniel Alfonso Botero-Rosas, Mauricio Cagy, Ruben Dario Henao-Idarraga
Format: Article
Language:English
Published: Universidad de Antioquia 2015-05-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:https://revistas.udea.edu.co/index.php/ingenieria/article/view/17958
Description
Summary:Digital signal processing of the electroencephalogram (EEG) became important in monitoring depth of anesthesia (DoA) being used to provide a better anesthetic technique. The objective of this work was to conduct a review about nonlinear mathematical methods applied recently to the analyses of nonlinear non-stationary EEG signal. A review was conducted showing time- and frequency-domain nonlinear mathematical methods recently applied to EEG analysis: Approximate Entropy, Sample Entropy, Spectral Entropy, Permutation Entropy, Wavelet Transform, Wavelet Entropy, Bispectrum, Bicoherence and Hilbert Huang Transform. Some algorithms were implemented and tested in one EEG signal record from a patient at The Sabana University Clinic. Recently published results from different methods are discussed. Nonlinear techniques such as entropy analysis in time domain and combination with wavelet transform, and Hilbert Huang transform in frequency domain have shown promising results in classifications of depth of anesthesia stages.
ISSN:0120-6230
2422-2844