A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients

Abstract In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated pe...

Full description

Bibliographic Details
Main Authors: Samantha Bove, Maria Colomba Comes, Vito Lorusso, Cristian Cristofaro, Vittorio Didonna, Gianluca Gatta, Francesco Giotta, Daniele La Forgia, Agnese Latorre, Maria Irene Pastena, Nicole Petruzzellis, Domenico Pomarico, Lucia Rinaldi, Pasquale Tamborra, Alfredo Zito, Annarita Fanizzi, Raffaella Massafra
Format: Article
Language:English
Published: Nature Portfolio 2022-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-11876-4
_version_ 1828221895985594368
author Samantha Bove
Maria Colomba Comes
Vito Lorusso
Cristian Cristofaro
Vittorio Didonna
Gianluca Gatta
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Maria Irene Pastena
Nicole Petruzzellis
Domenico Pomarico
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Annarita Fanizzi
Raffaella Massafra
author_facet Samantha Bove
Maria Colomba Comes
Vito Lorusso
Cristian Cristofaro
Vittorio Didonna
Gianluca Gatta
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Maria Irene Pastena
Nicole Petruzzellis
Domenico Pomarico
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Annarita Fanizzi
Raffaella Massafra
author_sort Samantha Bove
collection DOAJ
description Abstract In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.
first_indexed 2024-04-12T16:47:42Z
format Article
id doaj.art-21667fa02e724bf7860830faad46bc80
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-12T16:47:42Z
publishDate 2022-05-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-21667fa02e724bf7860830faad46bc802022-12-22T03:24:31ZengNature PortfolioScientific Reports2045-23222022-05-0112111010.1038/s41598-022-11876-4A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patientsSamantha Bove0Maria Colomba Comes1Vito Lorusso2Cristian Cristofaro3Vittorio Didonna4Gianluca Gatta5Francesco Giotta6Daniele La Forgia7Agnese Latorre8Maria Irene Pastena9Nicole Petruzzellis10Domenico Pomarico11Lucia Rinaldi12Pasquale Tamborra13Alfredo Zito14Annarita Fanizzi15Raffaella Massafra16Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Unità Operativa Complessa Di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Dipartimento Di Medicina Di Precisione, Università Della Campania “Luigi Vanvitelli”Unità Operativa Complessa Di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Unità Operativa Complessa Di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Unità Operativa Complessa Di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Oncologia Per La Presa in Carico Globale del Paziente, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Unità Operativa Complessa Di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Struttura Semplice Dipartimentale Di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”Abstract In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.https://doi.org/10.1038/s41598-022-11876-4
spellingShingle Samantha Bove
Maria Colomba Comes
Vito Lorusso
Cristian Cristofaro
Vittorio Didonna
Gianluca Gatta
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Maria Irene Pastena
Nicole Petruzzellis
Domenico Pomarico
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Annarita Fanizzi
Raffaella Massafra
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
Scientific Reports
title A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
title_full A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
title_fullStr A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
title_full_unstemmed A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
title_short A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
title_sort ultrasound based radiomic approach to predict the nodal status in clinically negative breast cancer patients
url https://doi.org/10.1038/s41598-022-11876-4
work_keys_str_mv AT samanthabove aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT mariacolombacomes aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT vitolorusso aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT cristiancristofaro aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT vittoriodidonna aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT gianlucagatta aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT francescogiotta aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT danielelaforgia aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT agneselatorre aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT mariairenepastena aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT nicolepetruzzellis aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT domenicopomarico aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT luciarinaldi aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT pasqualetamborra aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT alfredozito aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT annaritafanizzi aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT raffaellamassafra aultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT samanthabove ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT mariacolombacomes ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT vitolorusso ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT cristiancristofaro ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT vittoriodidonna ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT gianlucagatta ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT francescogiotta ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT danielelaforgia ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT agneselatorre ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT mariairenepastena ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT nicolepetruzzellis ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT domenicopomarico ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT luciarinaldi ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT pasqualetamborra ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT alfredozito ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT annaritafanizzi ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients
AT raffaellamassafra ultrasoundbasedradiomicapproachtopredictthenodalstatusinclinicallynegativebreastcancerpatients