Disturbed circadian rhythm of locomotor activity of pullets is related to feather pecking in laying hens

ABSTRACT: Various aspects of activity, such as spontaneous activity, explorative activity, activity in open-field tests, and hyperactivity syndrome have been explored as causal factors of feather pecking in laying hens, with no clear results. In all previous studies, mean values of activity over dif...

Full description

Bibliographic Details
Main Authors: Werner Bessei, Jens Tetens, Jörn Bennewitz, Clemens Falker-Gieske, Tanja Hofmann, Hans-Peter Piepho
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S003257912300072X
Description
Summary:ABSTRACT: Various aspects of activity, such as spontaneous activity, explorative activity, activity in open-field tests, and hyperactivity syndrome have been explored as causal factors of feather pecking in laying hens, with no clear results. In all previous studies, mean values of activity over different time intervals were used as criteria. Incidental observation of alternated oviposition time in lines selected for high (HFP) and low feather pecking (LFP), supported by a recent study which showed differentially expressed genes related to the circadian clock in the same lines, led to the hypothesis that feather pecking may be related to a disturbed diurnal activity rhythm. Hence activity recordings of a previous generation of these lines have been reanalyzed. Data sets of a total of 682 pullets of 3 subsequent hatches of HFP, LFP, and an unselected control line (CONTR) were used. Locomotor activity was recorded in pullets housed in groups of mixed lines in a deep litter pen on 7 consecutive 13-h light phases, using a radio-frequency identification antenna system. The number of approaches to the antenna system was recorded as a measure of locomotor activity and analyzed using a generalized linear mixed model including hatch, line, time of day and the interactions of hatch × time of day and line × time of day as fixed effects. Significant effects were found for time and the interaction line × time of day but not for line. All lines showed a bimodal pattern of diurnal activity. The peak activity of the HFP in the morning was lower than that of the LFP and CONTR. In the afternoon peak all lines differed with the highest mean in the LFP followed by CONTR and HFP. The present results provide support for the hypothesis that a disturbed circadian clock plays a role in the development of feather pecking.
ISSN:0032-5791