Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions
Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG ana...
Principais autores: | Jonatan Lerga, Nicoletta Saulig, Ljubiša Stanković, Damir Seršić |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2021-02-01
|
coleção: | Mathematics |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2227-7390/9/4/451 |
Registros relacionados
-
Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals
por: Nicoletta Saulig, et al.
Publicado em: (2022-10-01) -
Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time–Frequency Distributions with Application in EEG Seizure Signals Analysis
por: Vedran Jurdana, et al.
Publicado em: (2023-05-01) -
A novel approach to extracting useful information from noisy TFDs using 2D local entropy measures
por: Ana Vranković, et al.
Publicado em: (2020-04-01) -
Quantitative EEG based on Renyi Entropy for Epileptic Classification
por: HADIYOSO Sugondo, et al.
Publicado em: (2019-05-01) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
por: Dagmar Markechová, et al.
Publicado em: (2018-08-01)